

Operating Instructions

Fronius Tauro 50-3 Fronius Tauro ECO 50-3 Fronius Tauro ECO 99-3 Fronius Tauro ECO 100-3

DE | Bedienungsanleitung

Inhaltsverzeichnis

Allgemeines	
Umgebungsbedingungen	
Qualifiziertes Personal	
Wartung	
Allgemeine Informationen	
Gerätebeschreibung	
Gerätebeschreibung	
Personen- und Geräteschutz	
Warnhinweise und Leistungsschild am Gerä	t
WSD (Wired Shut Down)	
7entraler NA-Schutz	
Üherenannunge-Schutzeinrichtung SDD	
	belüftung
Leistungs-Derating	
	es)
	D (direct, 20 A option)
	D (direct, 30 A option)
Option DC-Trenner Verriegelung	
Montagemöglichkeit für Drittanbieter-Kom	oonenten
	richter
Interne schematische Verschaltung der IOs	
Installation und Inbetriebnahme	
Kompatibilitat von Systemkomponenten	
Standort-Wani und Montagelage	
Krantransport	

	·	34
		35
		35
Ab		35
		35
		37
		38
Ne		38
Ar		38
		38
		39
		39
		40
		41
		41
		41
		42
		44
Ka	bel mit Kabelschuh anschließen	46
		47
		47
DC		47
	·	48
		49
		49
		50
D/		50
		51
Γ\ <i>σ</i>		52 53
Date		55 55
		55
		55
		56
		56
		58
		60
		60
Da		60
		60
In	stallation mit dem Browser	61
		63
We	echselrichter stromlos schalten und wieder einschalten	63
Einstell	ungan - Panutzaraharflächa das Washastrichters	65
Emstern	ungen - Benutzeroberfläche des Wechselrichters	υt
Benu	tzereinstellungen	67
Ве	nutzeranmeldung	67
Sp	orache auswählen	67
	· · · · · · · · · · · · · · · · · · ·	68
	·	68
Fu		68
		69
	·	69
_		69
-		72
		72
		72
		72
		72
		72
TU	formationformation	73

Lizenzmanager	73
Support	74
Kommunikation	75
Netzwerk	75
Modbus	76
Fernsteuerung	77
Fronius Solar API	77
Internet Services	78
Sicherheits- und Netzanforderungen	79
Länder-Setup	79
Einspeisebegrenzung	79
I/O-Leistungsmanagement	80
Anschluss-Schema - 4 Relais	81
Einstellungen I/O-Leistungsmanagement - 4 Relais	82
Anschluss-Schema - 3 Relais	83
Einstellungen I/O-Leistungsmanagement - 3 Relais	84
Anschluss-Schema - 2 Relais	85
Einstellungen I/O-Leistungsmanagement - 2 Relais	86
Anschluss-Schema - 1 Relais	87
Einstellungen I/O-Leistungsmanagement - 1 Relais	88
Anhang	89
Statusmeldungen und Behebung	91
Statusmeldungen	91
Technische Daten	92
Tauro 50-3-D / 50-3-P	92
Tauro Eco 50-3-D / 50-3-P	94
Tauro Eco 99-3-D / 99-3-P	96
Tauro Eco 99-3-D / 99-3-1	98
WLAN	101
Erklärung der Fußnoten	101
Integrierter DC-Trenner	101
	103
CE-Kennzeichen	103
	103
	103
	103
Fronius SOS	104
	104
Entsorgung	104

Sicherheitsvorschriften

Erklärung Sicherheitshinwei-

WARNUNG!

Bezeichnet eine möglicherweise gefährliche Situation.

Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.

VORSICHT!

Bezeichnet eine möglicherweise schädliche Situation.

Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen sowie Sachschäden die Folge sein.

HINWEIS!

Bezeichnet die Möglichkeit beeinträchtigter Arbeitsergebnisse und von Schäden an der Ausrüstung.

Wenn Sie eines der im Kapitel "Sicherheitsvorschriften" abgebildeten Symbole sehen, ist erhöhte Achtsamkeit erforderlich.

Allgemeines

Das Gerät ist nach dem Stand der Technik und unter Berücksichtigung der anerkannten sicherheitstechnischen Vorgaben gefertigt. Bei Fehlbedienung oder Missbrauch besteht Gefahr für

- Leib und Leben des Bedieners oder Dritte,
- das Gerät und andere Sachwerte des Betreibers.

Alle Personen, die mit der Inbetriebnahme und Instandhaltung des Gerätes zu tun haben, müssen

- entsprechend qualifiziert sein,
- Kenntnisse im Umgang mit Elektroinstallationen haben und
- diese Bedienungsanleitung vollständig lesen und genau befolgen.

Ergänzend zur Bedienungsanleitung sind die allgemein gültigen sowie die örtlichen Vorgaben zu Unfallverhütung und Umweltschutz zu beachten.

Alle Sicherheits- und Gefahrenhinweise am Gerät

- in lesbarem Zustand halten,
- nicht beschädigen,
- nicht entfernen,
- nicht abdecken, überkleben oder übermalen.

Das Gerät nur betreiben, wenn alle Schutzeinrichtungen voll funktionstüchtig sind. Falls die Schutzeinrichtungen nicht voll funktionstüchtig sind, besteht Gefahr für

- Leib und Leben des Bedieners oder Dritte,
- das Gerät und andere Sachwerte des Betreibers.

Nicht voll funktionstüchtige Sicherheitseinrichtungen vor dem Einschalten des Geräts von einem autorisierten Fachbetrieb instandsetzen lassen.

Schutzeinrichtungen niemals umgehen oder außer Betrieb setzen.

Die Positionen der Sicherheits- und Gefahrenhinweise am Gerät sind dem Kapitel "Warnhinweise am Gerät" der Bedienungsanleitung Ihres Gerätes zu entnehmen.

Störungen, die die Sicherheit beeinträchtigen, vor dem Einschalten des Gerätes beseitigen.

Umgebungsbedingungen

Betrieb oder Lagerung des Geräts außerhalb des angegebenen Bereichs gilt als nicht bestimmungsgemäß. Für hieraus entstandene Schäden haftet der Hersteller nicht.

Qualifiziertes Personal

Die Service-Informationen in dieser Bedienungsanleitung sind nur für qualifiziertes Fachpersonal bestimmt. Ein elektrischer Schlag kann tödlich sein. Führen Sie keine anderen als die in der Dokumentation angeführten Tätigkeiten aus. Das gilt auch, wenn Sie dafür qualifiziert sind.

Sämtliche Kabel und Leitungen müssen fest, unbeschädigt, isoliert und ausreichend dimensioniert sein. Lose Verbindungen, angeschmorte, beschädigte oder unterdimensionierte Kabel und Leitungen sofort von einem autorisierten Fachbetrieb instandsetzen lassen.

Die Instandsetzung darf nur durch einen autorisierten Fachbetrieb erfolgen.

Bei fremdbezogenen Teilen ist nicht gewährleistet, dass diese beanspruchungsund sicherheitsgerecht konstruiert und gefertigt sind. Nur Original-Ersatzteile verwenden (gilt auch für Normteile).

Ohne Genehmigung des Herstellers keine Veränderungen, Ein- oder Umbauten am Gerät vornehmen.

Bauteile in nicht einwandfreiem Zustand sofort austauschen.

Sicherheitsmaßnahmen am Einsatzort

Bei der Installation von Geräten mit Kühlluft-Öffnungen sicherstellen, dass die Kühlluft ungehindert durch die Luftschlitze ein- und austreten kann. Das Gerät nur gemäß der am Leistungsschild angegebenen Schutzart betreiben.

Angaben zu Geräuschemissions-Werten

Der Schall-Druckpegel des Wechselrichters ist in den **Technische Daten** angegeben.

Die Kühlung des Gerätes erfolgt durch eine elektronische Temperaturregelung so geräuscharm wie möglich und ist abhängig von der umgesetzten Leistung, der Umgebungstemperatur, der Verschmutzung des Gerätes u.a.m.

Ein arbeitsplatzbezogener Emissionswert kann für dieses Gerät nicht angegeben werden, da der tatsächlich auftretende Schall-Druckpegel stark von der Montagesituation, der Netzqualität, den umgebenden Wänden und den allgemeinen Raumeigenschaften abhängig ist.

EMV-Maßnahmen

In besonderen Fällen können trotz Einhaltung der genormten Emissions-Grenzwerte Beeinflussungen für das vorgesehene Anwendungsgebiet auftreten (z. B. wenn störempfindliche Geräte am Aufstellungsort sind, oder wenn der Aufstellungsort in der Nähe von Radio- oder Fernsehempfängern ist). In diesem Fall ist der Betreiber verpflichtet, Maßnahmen für die Störungsbehebung zu ergreifen.

Datensicherheit

Für die Datensicherung von Änderungen gegenüber den Werkseinstellungen ist der Anwender verantwortlich. Im Falle gelöschter persönlicher Einstellungen haftet der Hersteller nicht.

Urheberrecht

Das Urheberrecht an dieser Bedienungsanleitung verbleibt beim Hersteller.

Text und Abbildungen entsprechen dem technischen Stand bei Drucklegung. Änderungen vorbehalten. Der Inhalt der Bedienungsanleitung begründet keinerlei Ansprüche seitens des Käufers. Für Verbesserungsvorschläge und Hinweise auf Fehler in der Bedienungsanleitung sind wir dankbar.

Schutzerdung (PE)

Verbindung eines Punktes im Gerät, System oder in der Anlage zur Erde zum Schutz gegen einen elektrischen Schlag im Fehlerfall. Bei der Installation des Tauro Wechselrichters ist der PE-Anschluss obligatorisch, da es sich um ein Gerät der Schutzklasse 1 handelt. Beim Anschluss des PE-Leiters darauf achten, dass er gegen unbeabsichtigtes Trennen gesichert ist. Alle unter "Wechselrichter am öffentlichen Netz anschließen (AC-Seite)" aufgeführten Punkte sind zu beachten, einschließlich der Verwendung von Unterlegscheiben, Schraubensicherungen und Muttern mit dem definierten Drehmoment.

Es muss sichergestellt sein, dass bei Verwendung der Zugentlastungen der Schutzleiter im Falle eines möglichen Ausfalls als Letzter belastet wird. Beim Anschluss des Schutzleiters sind die durch die jeweiligen nationalen Vorschriften festgelegten Mindestquerschnitts-Anforderungen zu beachten. Zusätzlich muss der Mindestquerschnitt des PE-Leiters nach der Produktnorm IEC 62109-1 mindestens die Hälfte der Phasenquerschnitte betragen, da für die Phasen (L1 / L2 / L3) ein Querschnitt von mindestens 35mm² (50 kW) oder 70mm² (99,99 / 100 kW) verwendet werden muss.

Wartung

Die Tauro Wechselrichter sind prinzipiell wartungsfrei. Werden trotzdem Wartungsarbeiten am Wechselrichter durchgeführt, wie zum Beispiel Reinigung oder Austausch von Komponenten, hat dies in Abstimmung mit einem Fronius-geschulten Servicetechniker zu erfolgen. Der Hersteller übernimmt keine Haftung für Schäden, die durch unsachgemäßen Gebrauch entstehen.

Allgemeine Informationen

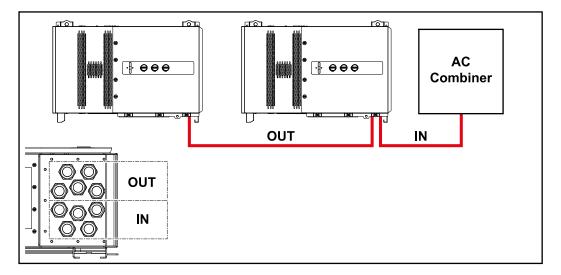
Gerätebeschreibung

Gerätebeschreibung

Der Wechselrichter wandelt den von den Solarmodulen erzeugten Gleichstrom in Wechselstrom um. Dieser Wechselstrom wird synchron zur Netzspannung in das öffentliche Stromnetz eingespeist.

Der Wechselrichter wurde ausschließlich für die Anwendung in netzgekoppelten Photovoltaik-Anlagen entwickelt, eine vom öffentlichen Netz unabhängige Stromerzeugung ist nicht möglich.

Durch seinen Aufbau und seine Funktionsweise bietet der Wechselrichter bei der Montage und im Betrieb ein Maximum an Sicherheit.


Der Wechselrichter überwacht automatisch das öffentliche Stromnetz. Bei abnormen Netzverhältnissen stellt der Wechselrichter den Betrieb sofort ein und unterbricht die Einspeisung in das Stromnetz (z.B. bei Netzabschaltung, Unterbrechung, etc.).

Die Netzüberwachung erfolgt durch Spannungsüberwachung, Frequenzüberwachung und die Überwachung von Inselverhältnissen.

AC Daisy Chain

Mit der Wechselrichtervariante "AC Daisy Chain" kann die AC-Leitung direkt vom Wechselrichter auf einen weiteren Wechselrichter weitergeleitet werden. Somit können mehrere Tauro Wechselrichter, bis zu einer Ausgangsleistung von max. 200 kW, schnell miteinander verbunden werden.

Der minimale Kabelquerschnitt ist durch die Sicherung am Netzanschlusspunkt definiert. Ein größerer Kabelquerschnitt kann jederzeit gewählt werden. Die jeweils gültigen Ländernormen müssen berücksichtigt und angewendet werden.

Fronius Solar.web

Mit Fronius Solar.web bzw. Fronius Solar.web Premium kann die PV-Anlage vom Anlagenbesitzer sowie Installateur einfach überwacht und analysiert werden. Der Wechselrichter übermittelt bei entsprechender Konfiguration die Daten wie z. B. Leistung, Erträge, Verbrauch und Energiebilanz an Fronius Solar.web. Näher Informationen unter Solar.web - Monitoring & Analyse.

Die Konfiguration erfolgt über den Inbetriebnahme-Assistenten siehe Kapitel Installation mit der App auf Seite 60 oder Installation mit dem Browser auf Seite 61.

Voraussetzungen für die Konfiguration:

- Internet-Verbindung (Download: min. 512 kBit/s, Upload: min. 256 kBit/s)*.
- Benutzerkonto auf solarweb.com.
- Abgeschlossene Konfiguration über den Inbetriebnahme-Assistenten.
- Die Angaben stellen keine absolute Garantie für eine einwandfreie Funktion dar. Hohe Fehlerraten in der Übertragung, Empfangsschwankungen oder Übertragungsaussetzer können die Datenübertragung negativ beeinflussen. Fronius empfiehlt, die Internet-Verbindung nach den Mindestanforderungen vor Ort zu testen.

Lokale Kommunikation

Der Wechselrichter kann über das Multicast DNS-Protokoll (mDNS) gefunden werden. Es wird empfohlen, den Wechselrichter über den zugewiesenen Hostnamen zu suchen.

Folgende Daten können über mDNS abgerufen werden:

- NominalPower
- Systemname
- DeviceSerialNumber
- SoftwareBundleVersion

Personen- und Geräteschutz

Sicherheit

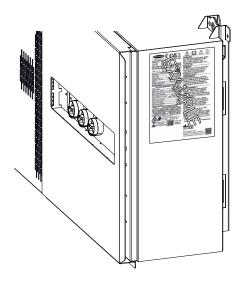
MARNUNG!

Gefahr durch Fehlbedienung und fehlerhaft durchgeführte Arbeiten.

Schwerwiegende Personen- und Sachschäden können die Folge sein.

- ▶ Alle in diesem Dokument beschriebenen Arbeiten und Funktionen dürfen nur von geschultem Fachpersonal ausgeführt werden.
- ▶ Dieses Dokument lesen und verstehen.
- Sämtliche Bedienungsanleitungen der Systemkomponenten, insbesondere Sicherheitsvorschriften lesen und verstehen.

MARNUNG!


Gefahr durch elektromagnetische Felder. Während des Betriebs entstehen elektromagnetische Felder.

Auswirkungen auf die Gesundheit von Personen, z.B.: Träger von Herzschrittmachern können die Folge sein.

Nicht über einen längeren Zeitraum näher als 20 cm am Wechselrichter aufhalten.

Warnhinweise und Leistungsschild am Gerät

Am und im Wechselrichter befinden sich Warnhinweise und Sicherheitssymbole. Diese Warnhinweise und Sicherheitssymbole dürfen weder entfernt noch übermalt werden. Die Hinweise und Symbole warnen vor Fehlbedienung, woraus schwerwiegende Personen- und Sachschäden resultieren können.

Am Leistungsschild ganz unten wird eine 4-stellige Ziffer (coded production date) angedruckt, aus der das Produktionsdatum berechnet werden kann. Zieht man von den ersten beiden Ziffern den Wert 11 ab, erhält man das Produktionsjahr.

Die letzten beiden Ziffern stehen für die Kalenderwoche in der das Gerät produziert wurde.

Beispiel: Wert am Leistungsschild = 3205

32 - 11 = 21 → Produktionsjahr 2021 **05** = Kalenderwoche 05

Symbole am Leistungsschild:

 ϵ

CE-Kennzeichnung - bestätigt das Einhalten der zutreffenden EU-Richtlinien und Verordnungen.

UK

UKCA-Kennzeichnung - bestätigt das Einhalten der zutreffenden Richtlinien und Verordnungen des Vereinigten Königreichs.

WEEE-Kennzeichnung - Elektro- und Elektronik-Altgeräte müssen gemäß Europäischer Richtlinie und nationalem Recht getrennt gesammelt und einer umweltgerechten Wiederverwertung zugeführt werden.

RCM-Kennzeichnung - gemäß den Anforderungen von Australien und Neuseeland geprüft.

ICASA-Kennzeichnung - gemäß den Anforderungen der Independent Communications Authority of South Africa geprüft.

CMIM-Kennzeichnung - gemäß den Anforderungen von IMANOR für Einfuhrvorschriften und die Einhaltung der marokkanischen Normen geprüft.

Sicherheitssymbole:

Gefahr von schwerwiegenden Personen- und Sachschäden durch Fehlbedienung.

Beschriebene Funktionen erst anwenden, wenn folgende Dokumente vollständig gelesen und verstanden wurden:

- Diese Bedienungsanleitung.
- Sämtliche Bedienungsanleitungen der Systemkomponenten der Photovoltaikanlage, insbesondere die Sicherheitsvorschriften.

Gefährliche elektrische Spannung.

Vor dem Öffnen des Geräts Entladezeit der Kondensatoren abwarten!

Text der Warnhinweise:

WARNUNG!

Ein elektrischer Schlag kann tödlich sein. Vor dem Öffnen des Geräts dafür sorgen, dass Ein- und Ausgangsseite spannungsfrei und isoliert sind.

WSD (Wired Shut Down)

Die kabelgebundene Abschaltung WSD unterbricht die Netzeinspeisung des Wechselrichters, wenn die Auslöseeinrichtung (Schalter, z. B. Not-Aus oder Feuermelde-Kontakt) aktiviert wurde.

Bei Ausfall eines Wechselrichters (Sekundärgerät) wird dieser überbrückt und der Betrieb der anderen Wechselrichter bleibt aufrecht. Wenn ein zweiter Wechselrichter (Sekundärgerät) oder der Wechselrichter (Primärgerät) ausfällt, wird der Betrieb der gesamten WSD-Kette unterbrochen.

Installation siehe WSD (Wired Shut Down) auf Seite 58.

Zentraler NA-Schutz

Der Wechselrichter bietet die Möglichkeit, die integrierten AC-Relais als Kuppelschalter in Verbindung mit einem zentralen NA-Schutz zu verwenden (gemäß VDE-AR-N 4105:2018:11 §6.4.1). Dazu ist die zentrale Auslöseeinrichtung (Schalter) wie im Kapitel "WSD (Wired Shut Down)" beschrieben in die WSD-Kette zu integrieren.

RCMU

Der Wechselrichter ist mit einer Allstrom-sensitiven Fehlerstrom-Überwachungseinheit (RCMU = Residual Current Monitoring Unit) nach IEC 62109-2 und

IEC63112 ausgestattet.

Diese überwacht Fehlerströme vom PV-Modul bis zum AC-Ausgang des Wechselrichters und trennt bei einem unzulässigen Fehlerstrom den Wechselrichter vom Netz.

Überspannungsschutz

Der Wechselrichter ist DC- und AC-seitig mit einem integrierten Überspannungsschutz nach IEC 62109-2 ausgestattet. Der Überspannungsschutz schützt die Anlage vor Schäden infolge einer Überspannung.

Überspannungs-Schutzeinrichtung SPD

Die Überspannungs-Schutzeinrichtung (Surge Protective Device - SPD) schützt vor temporären Überspannungen und leitet Stoßströme (z. B. Blitzschlag) ab. Aufbauend auf ein Gesamt-Blitzschutzkonzept leistet der SPD einen Beitrag zum Schutz ihrer PV-Systemkomponenten.

Wenn die Überspannungs-Schutzeinrichtung ausgelöst wird, ändert sich die Farbe des Indikators von grün auf rot (mechanische Anzeige).

Ein ausgelöster SPD ist umgehend von einem autorisierten Fachbetrieb durch einen funktionsfähigen SPD zu ersetzen, um die volle Schutzfunktion des Geräts aufrecht zu erhalten.

Es gibt die Möglichkeit einer digitalen Anzeige, wenn ein SPD ausgelöst hat. Für die Einstellung dieser Funktion, siehe PDF "SPD Auslösung / Temporary SPD Triggering" im Service & Support Bereich auf www.fronius.com

WICHTIG!

Nach Einstellung der oben beschriebenen Funktion reagiert der Wechselrichter auch, wenn das 2-polige Signalkabel der Überspannungs-Schutzeinrichtung unterbrochen oder beschädigt ist.

AFCI - Lichtbogen-Erkennung (ArcGuard)

Optional ab Werk verfügbar.

AFCI (Arc Fault Circuit Interrupter) schützt vor Störlichtbögen und ist im engeren Sinne eine Schutzeinrichtung gegen Kontaktfehler. Der AFCI bewertet auftretende Störungen im Strom- und Spannungsverlauf mit einer elektronischen Schaltung und schaltet den Stromkreis bei einem erkannten Kontaktfehler ab. Überhitzungen an schlechten Kontaktstellen werden somit verhindert und möglicherweise Brände vermieden.

WICHTIG!

Aktive Solarmodul-Elektronik kann die Funktion des ArcGuards beeinträchtigen. Fronius übernimmt keine Garantie für die korrekte Funktion bei Verwendung des Fronius ArcGuards in Kombination mit aktiver Solarmodul-Elektronik.

Gefahr durch fehlerhafte oder unsachgemäße DC-Installation.

Beschädigungsgefahr und in Folge Brandgefahr der PV-Anlage, durch unzulässige thermische Belastungen, die bei einem Lichtbogen auftreten, kann die Folge sein.

- ▶ Steckverbindungen auf sachgemäßen Zustand prüfen.
- ► Fehlerhafte Isolierungen sachgemäß in Stand setzen.
- Anschlusstätigkeiten gemäß den Angaben durchführen.

WICHTIG!

Fronius übernimmt keine Kosten für Produktionsausfälle, Installateurskosten, ..., die auf Grund eines erkannten Lichtbogens und seinen Folgen entstehen können. Fronius übernimmt keine Haftung für Schäden, die trotz der integrierten Lichtbogen-Erkennung / Unterbrechung auftreten können (z. B. durch einen parallelen Lichtbogen).

Automatische Wiederzuschaltung

Für den Neustart der Lichtbogen-Erkennung sind keine manuellen Schritte erforderlich, wenn eine Unterbrechungszeit von mindestens 5 Minuten gewährleistet ist, bevor der Betrieb fortgesetzt wird.

Bei der fünften Unterbrechung innerhalb eines Zeitraums von 24 Stunden darf die Lichtbogen-Erkennung nur manuell zurückgesetzt werden, bevor sie sich wieder zuschaltet. Danach kann die Lichtbogen-Erkennung in den automatischen Wiederzuschalt-Modus zurückkehren.

Sicherer Zustand

Falls eine der folgenden Sicherheitseinrichtungen auslöst, wechselt der Wechselrichter in einen sicheren Zustand:

- WSD
- Isolationsmessung
- RCMU und
- AFCI

Im sicheren Zustand speist der Wechselrichter nicht mehr ein und wird durch Öffnen der AC-Relais vom Netz getrennt.

Bestimmungsgemäße Verwendung

Bestimmungsgemäße Verwendung

Der Solar-Wechselrichter ist ausschließlich dazu bestimmt, Gleichstrom von Solarmodulen in Wechselstrom umzuwandeln und diesen in das öffentliche Stromnetz einzuspeisen.

Als nicht bestimmungsgemäß gilt:

- eine andere oder darüber hinausgehende Benutzung
- Umbauten am Wechselrichter, die nicht ausdrücklich von Fronius empfohlen werden
- das Einbauen von Bauteilen, die nicht ausdrücklich von Fronius empfohlen oder vertrieben werden.

Für hieraus entstehende Schäden haftet der Hersteller nicht. Gewährleistungsansprüche erlöschen.

Zur bestimmungsgemäßen Verwendung gehört auch das Beachten aller Hinweise aus der Bedienungsanleitung.

Bestimmungen für die Photovoltaikanlage

Der Wechselrichter ist ausschließlich für den Anschluss und den Betrieb mit Solarmodulen ausgelegt.

Eine Anwendung an anderen DC-Generatoren (z.B. Windgeneratoren) ist nicht zulässig.

Bei Auslegung der Photovoltaikanlage darauf achten, dass alle Komponenten der Photovoltaikanlage ausschließlich in ihrem zulässigen Betriebsbereich betrieben werden.

Alle vom Solarmodul-Hersteller empfohlenen Maßnahmen zur dauerhaften Erhaltung der Solarmodul-Eigenschaften berücksichtigen.

Funktionsprinzip

Funktionsprinzip

Der Betrieb des Wechselrichters erfolgt vollautomatisch. Sobald nach Sonnenaufgang genug Energie von den Solarmodulen zur Verfügung steht, beginnt der Wechselrichter mit der Überprüfung der PV-Anlage (Isolationsmessung), sowie des Netzes (Netzspannung und Netzfrequenz). Sind alle Werte im normativen Rahmen erfolgt die automatische Aufschaltung auf das Netz und der Einspeisebetrieb.

Der Wechselrichter arbeitet so, dass die maximal mögliche Leistung aus den Solarmodulen entnommen wird. Diese Funktion wird als "Maximum Power Point Tracking" (MPPT) bezeichnet. Im Falle einer Verschattung der Solarmodule kann über die Funktion "Dynamic Peak Manager" weiterhin ein Großteil der lokalen maximale Leistung (LMPP) der PV-Anlage gewonnen werden.

Sobald nach Einbruch der Dämmerung das Energie-Angebot für eine Netzeinspeisung nicht ausreicht, trennt der Wechselrichter die Verbindung der Leistungselektronik zum Netz vollständig und stellt den Betrieb ein. Alle Einstellungen und gespeicherten Daten bleiben erhalten.

Kühlung des Wechselrichters durch Zwangsbelüftung

Die Kühlung des Wechselrichters erfolgt durch Zwangsbelüftung über temperaturgesteuerte Lüfter. Die von der Vorderseite angesaugte Luft wird über einen geschlossenen Kanal durch den AC- und DC-Kühlkörper sowie anschließend direkt über die Induktivitäten geleitet und abgeführt.

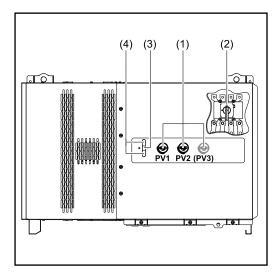
Der geschlossene Luftleit-Kanal bewirkt, dass der Elektronikbereich nicht mit der Außenluft in Berührung kommen. Dadurch wird eine Verschmutzung des Elektronikbereichs weitgehend verhindert.

Die Lüfterdrehzahl und die Temperatur des Wechselrichters werden überwacht.

Die drehzahlgeregelten und kugelgelagerten Lüfter des Wechselrichters bewirken:

- eine optimale Kühlung des Wechselrichters
- kühlere Bauteile und somit längere Lebensdauer
- geringstmöglichen Energieverbrauch
- hohe Ausgangsleistung auch im oberen Temperaturbereich des Wechselrichters

Leistungs-Derating


Wenn die Gerätetemperatur des Wechselrichters zu hoch wird, drosselt der Wechselrichter zum Selbstschutz automatisch die aktuelle Ausgangsleistung. Ursachen für eine zu hohe Gerätetemperatur können eine hohe Umgebungstemperatur oder eine nicht ausreichende Wärmeabfuhr sein (z.B. bei Einbau in Containern ohne zureichende Wärmeabfuhr).

Das Leistungs-Derating drosselt die Leistung des Wechselrichters so weit, dass die Temperatur den zulässigen Wert nicht überschreitet.

Bei Überschreitung einer maximalen Temperatur schaltet der Wechselrichter in einem sicheren Zustand ab und nimmt erst nach Abkühlung des Gerätes den Einspeisebetrieb wieder auf.

Bedienelemente und Anschlüsse

Bedienelemente und Anzeigen

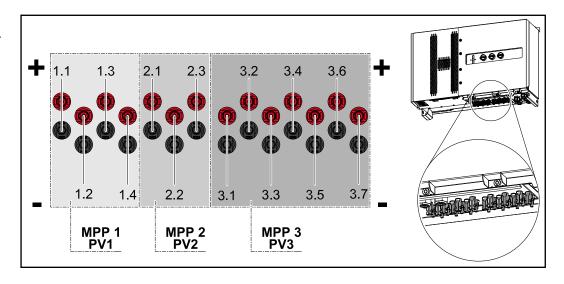
(1) DC-Trenner

Löst die elektrische Verbindung von den Solarmodulen zum Wechselrichter. Je nach Gerätetyp sind 2 oder 3 DC-Trenner verbaut.

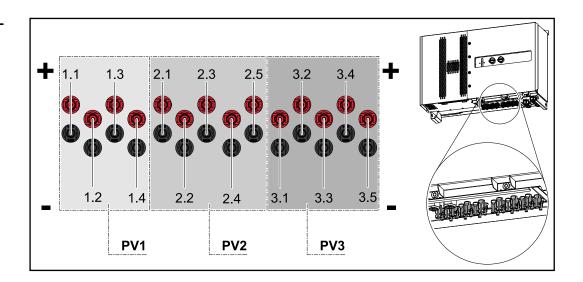
Die DC-Trenner können mit einem Vorhängeschloss gegen Einschalten gesichert werden.

(2) Option AC-Trenner

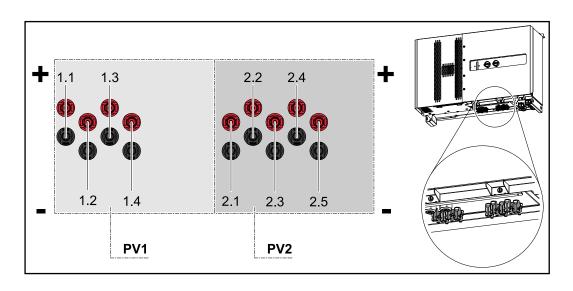
Der Optionale AC-Trenner löst die Verbindung vom Wechselrichter zum Netz

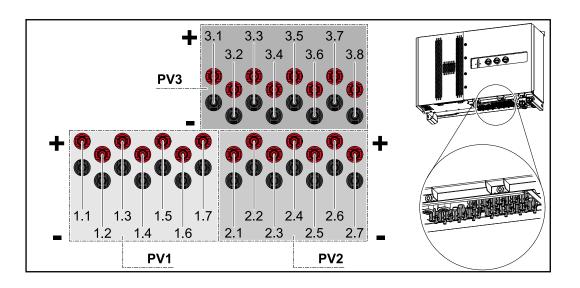

(3) Button Funktion

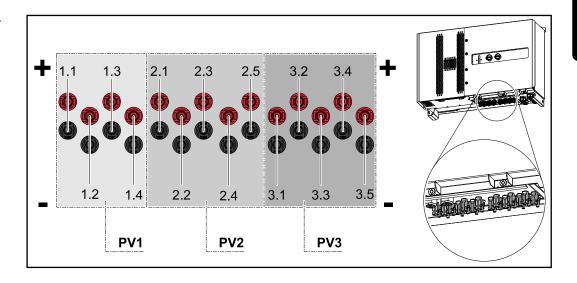
Nähere Infos zum Button Funktion siehe **Button-Funktionen**und LED Statusanzeige

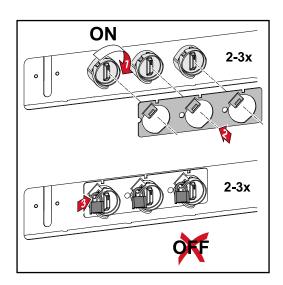

(4) LED Statusanzeige

Nähere Infos zur LED-Statusanzeige siehe **Button-Funktionen und LED Statusanzeige**

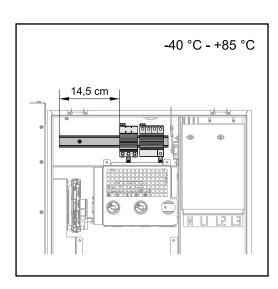

PV Anschlüsse -Tauro 50-3-D (direct)


PV Anschlüsse -Tauro 50-3-D (30A fuses)

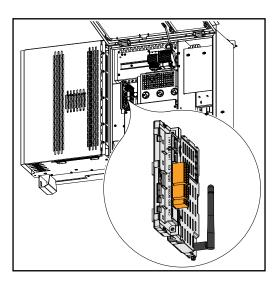

PV Anschlüsse -Tauro Eco 50-3-D (30A fuses)


PV Anschlüsse -Tauro Eco 99-3-D / 100-3-D (direct, 20 A option)

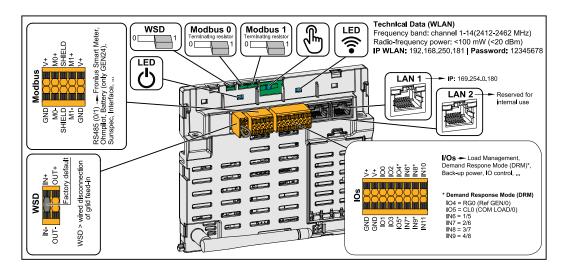
PV Anschlüsse -Tauro Eco 99-3-D / 100-3-D (direct, 30 A option)



Option DC-Trenner Verriegelung


Mit der optional erhältlichen DC-Trenner Verriegelung kann der Wechselrichter gegen ungewolltes Ausschalten verriegelt werden.

Montagemöglichkeit für Drittanbieter-Komponenten



Oberhalb des DC-Anschlussbereiches steht Platz für die Montage von Drittanbieter-Komponenten zur Verfügung. Auf der Hutschiene können Komponenten bis zu einer maximalen Breite von 14,5 cm (8 TE) montiert werden. Die Komponenten müssen eine Temperaturbeständigkeit von -40°C bis +85 aufweisen.

Datenkommunikations-Bereich im Wechselrichter Der Datenkommunikations-Bereich (Print Pilot) befindet sich oberhalb der DC-Anschlüsse im Wechselrichter.

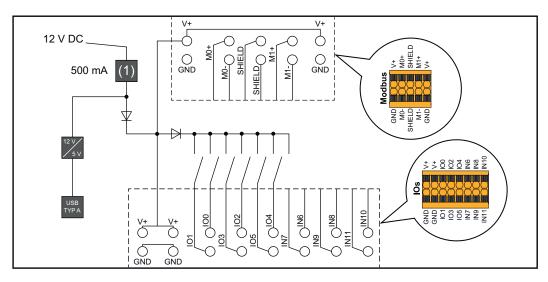
Datenkommunikations-Bereich

Modbus Anschlussklemme	Push-in Anschlussklemme für die Installation von Modbus 0, Modbus 1, 12 V und GND (Ground).
	Über die Modbus Anschlussklemme wird die Datenverbindung zu den angeschlossenen Komponenten hergestellt. Die Eingänge Mo und M1 können frei gewählt werden. Max. 4 Modbus Teilnehmer pro Eingang siehe Kapitel Modbus Teilnehmer auf Seite 55 .
WSD (Wired Shut Down) Switch	Definiert den Wechselrichter als WSD-Primärgerät oder WSD-Se- kundärgerät.
	Position 1: WSD-Primärgerät Position 0: WSD-Sekundärgerät

Modbus o (MBo) Switch	Schaltet den Abschlusswiderstand für Modbus 0 (MB0) ein/aus.
	Position 1: Abschlusswiderstand ein (Werkseinstellung) Position 0: Abschlusswiderstand aus
Modbus 1 (MB1) Switch	Schaltet den Abschlusswiderstand für Modbus 1 (MB1) ein/aus.
	Position 1: Abschlusswiderstand ein (Werkseinstellung) Position 0: Abschlusswiderstand aus
🖰 Optischer Sensor	Zur Bedienung des Wechselrichters. Siehe Kapitel Button-Funktionen und LED Statusanzeige auf Seite 24.
ি Kommunikations-LED	Zeigt den Zustand der Verbindung des Wechselrichters an.
(b) Betriebs-LED	Zeigt den Betriebszustand des Wechselrichters an.
LAN 1	Ethernet-Anschluss für die Daten- kommunikation (z. B. WLAN-Router, Hausnetzwerk oder für die Inbetrieb- nahme mit einem Laptop siehe Kapitel Installation mit dem Browser auf Sei- te 61).
LAN 2	Für zukünftige Funktionen reserviert. Nur LAN 1 verwenden, um Funktionsstörungen zu vermeiden.
WSD Anschlussklemme	Push-in Anschlussklemme für die WSD-Installation. Siehe Kapitel WSD (Wired Shut Down)" auf Seite 58.
IOs Anschlussklemme	Push-in Anschlussklemme für digitale Ein-/Ausgänge. Siehe Kapitel Zulässige Kabel für den Datenkommunikations-Bereich auf Seite 55 . Die Bezeichnungen (RGO, CLO, 1/5, 2/6, 3/7, 4/8) beziehen sich auf die Funktion Demand Response Mode siehe Kapitel EVU Editor - AUS - Demand Response Modes (DRM) auf Seite 69 .

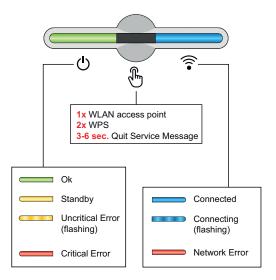
Interne schematische Verschaltung der IOs Am Pin V+ / GND besteht die Möglichkeit, mit einem externen Netzteil eine Spannung im Bereich von 12,5 - 24 V (+ max. 20 %) einzuspeisen. Die Ausgänge IO o - 5 können dann mit der eingespeisten externen Spannung betrieben werden. Pro Ausgang darf maximal 1 A entnommen werden, wobei insgesamt max. 3 A erlaubt sind. Die Absicherung muss extern erfolgen.

№ VORSICHT!


Gefahr durch Verpolung an den Anschlussklemmen durch unsachgemäßen Anschluss von externen Netzteilen.

Schwere Sachschäden am Wechselrichter können die Folge sein.

- ▶ Polarität des externen Netzteils vor dem Anschließen mit einem geeigneten Messgerät prüfen.
- ▶ Die Kabel an den Ausgängen V+/GND polrichtig anschließen.

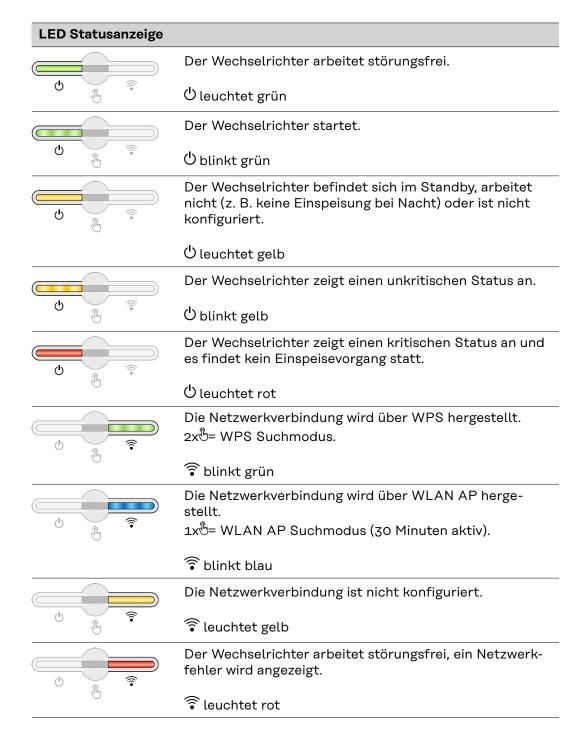

WICHTIG!

Bei Überschreitung der Gesamtleistung (6 W) schaltet der Wechselrichter die gesamte externe Spannungsversorgung ab.

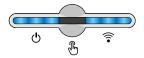
(1) Strombegrenzung

Button-Funktionen und LED Statusanzeige

Über die Betriebs-LED wird der Zustand des Wechselrichters angezeigt. Bei Störungen sind die einzelnen Schritte im Fronius Solar.web live App durchzuführen.



Der optische Sensor wird durch Berühren mit einem Finger betätigt.



Über die Kommunikations-LED wird der Status der Verbindung angezeigt. Für die Herstellung der Verbindung sind die einzelnen Schritte im Fronius Solar.web live App durchzuführen.

Sensor-Funktionen 1x = WLAN Accesspoint (AP) wird geöffnet. \$\hat{\text{\$\infty}}\$ blinkt blau 2x = Wi-Fi Protected Setup (WPS) wird aktiviert. \$\hat{\text{\$\infty}}\$ blinkt grün 3 Sekunden (max. 6 Sekunden) = die Servicemeldung wird beendet. \$\hat{\text{\$\infty}}\$ leuchtet gelb

LED Statusanzeige

Der Wechselrichter führt eine Aktualisierung durch.

Ů/ 🛜 blinken blau

Installation und Inbetriebnahme

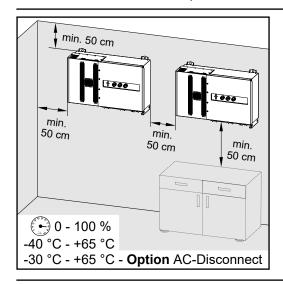
Allgemeines

Kompatibilität von Systemkomponenten Alle verbauten Komponenten in der PV-Anlage müssen kompatibel sein und die notwendigen Konfigurationsmöglichkeiten aufweisen. Die verbauten Komponenten dürfen die Funktionsweise der PV-Anlage nicht einschränken oder negativ beeinflussen.

HINWEIS!

Risiko durch nicht und/oder eingeschränkt kompatible Komponenten in der PV-Anlage.

Nicht kompatible Komponenten können den Betrieb und/oder die Funktionsweise der PV-Anlage einschränken und/oder negativ beeinflussen.


- Nur vom Hersteller empfohlene Komponenten in der PV-Anlage installieren.
- Vor der Installation die Kompatibilität von nicht ausdrücklich empfohlenen Komponenten mit dem Hersteller abklären.

Standort-Wahl und Montagelage

Standort-Wahl des Wechselrichters

Bei der Standort-Wahl für den Wechselrichter folgende Kriterien beachten:

Installation nur auf festem, nicht brennbarem Untergrund

Max. Umgebungstemperaturen: -40 °C / +65 °C

* mit eingebauter Option AC-Trenner: -30 °C / +65 °C

relative Luftfeuchte: 0 - 100 %

Bei Einbau des Wechselrichters in einen Schaltschrank oder einen ähnlichen, abgeschlossenen Raum durch Zwangsbelüftung für eine ausreichende Wärmeabfuhr sorgen.

Bei Montage des Wechselrichters an Außenwänden von Viehställen, ist vom Wechselrichter zu Lüftungs- und Gebäudeöffnungen ein Mindestabstand von 2 m in allen Richtungen einzuhalten.

Folgende Untergründe für die Montage sind zulässig:

- Wandmontage (Wellblechwände (Montageschienen), Ziegelwände, Betonwände oder andere ausreichend tragfähige und nicht brennbare Untergründe)
- Pole-Mount (Montage mithilfe von Montageschienen, hinter den PV-Modulen direkt auf PV-Aufständerung)
- Flachdächer (handelt es sich um ein Foliendach muss darauf geachtet werden, dass die Folien den Brandschutzanforderungen entsprechen und dementsprechend nicht leicht entflammbar sind. Nationale Vorschriften sind zu beachten.)
- Parkplatzüberdachungen (keine Überkopfmontage)

Die DC-Trenner müssen nach der Installation des Wechselrichters immer frei zugänglich sein.

Der Wechselrichter ist für die Montage im Innenbereich geeignet.

Der Wechselrichter ist für die Montage im Außenbereich geeignet.

Der Wechselrichter ist auf Grund seiner Schutzart IP 65 unempfindlich gegen Strahlwasser aus allen Richtungen und kann auch in feuchten Umgebungen eingesetzt werden.

Der Wechselrichter ist für die Montage im Außenbereich geeignet.

Um die Erwärmung des Wechselrichters so gering wie möglich zu halten, ist es besser den Wechselrichter keiner direkten Sonneneinstrahlung aussetzen. Den Wechselrichter an einer geschützten Position montieren, beispielsweise unterhalb der Solarmodule, oder unter einem Dachvorsprung.

WICHTIG! Der Wechselrichter darf über einer Seehöhe von 4000 m nicht mehr montiert und betrieben werden.

Den Wechselrichter nicht montieren:

 im Einzugsbereich von Ammoniak, ätzenden Dämpfen, Säuren oder Salzen (beispielsweise Düngemittel-Lagerplätze, Lüftungsöffnungen von Viehstallungen, chemische Anlagen, Gerberei-Anlagen, ...)

Auf Grund von Geräuschentwicklung in bestimmten Betriebszuständen den Wechselrichter nicht im unmittelbaren Wohnbereich montieren.

Den Wechselrichter nicht montieren in:

- Räumen mit erhöhter Unfallgefahr durch Nutztiere (Pferde, Rinder, Schafe, Schweine, ...)
- Ställen und angrenzenden Nebenräumen
- Lager- und Vorratsräumen für Heu, Stroh, Häcksel, Kraftfutter, Düngemittel, ...
- Lager- und Verarbeitungsräumen für Obst, Gemüse und Weinbauprodukte
- Räumen für die Aufbereitung von Körnern, Grünfutter und Futtermitteln

Der Wechselrichter ist staubdicht (IP 65) ausgeführt. In Bereichen mit starker Staubansammlung können jedoch die Kühlflächen verstauben und somit die thermische Leistungsfähigkeit beeinträchtigen. In diesem Fall ist eine regelmäßige Säuberung erforderlich. Eine Montage in Räumen und Umgebungen mit starker Staubentwicklung ist daher nicht zu empfehlen.

Montagelage

Der Wechselrichter ist für die senkrechte Montage an einer senkrechten Wand geeignet. Die optionalen Floor Racks dürfen bei der senkrechten Montage nicht verwendet werden.

Der Wechselrichter soll bei einer horizontalen Montagelage eine Mindestneigung von 3° haben, damit Wasser ablaufen kann. Es wird die Montage der optionalen Floor Racks empfohlen. Die Floor Racks dürfen nur auf einer Montagelage von 0 - 45° verwendet werden.

Der Wechselrichter ist für die Montage auf einer schrägen Fläche geeignet.

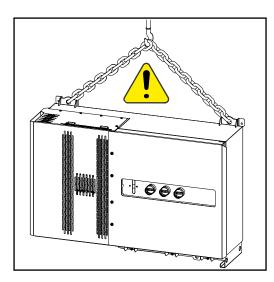
Den Wechselrichter nicht auf einer schrägen Fläche mit den Anschlüssen nach oben montieren.

Den Wechselrichter nicht in Schräglage an einer senkrechten Wand oder Säule montieren.

Den Wechselrichter nicht in Horizontallage an einer senkrechten Wand oder Säule montieren.

Den Wechselrichter nicht mit den Anschlüssen nach oben an einer senkrechten Wand oder Säule montieren.

Den Wechselrichter nicht überhängend mit den Anschlüssen nach oben montieren.


Den Wechselrichter nicht überhängend mit den Anschlüssen nach unten montieren.

Den Wechselrichter nicht an der Decke montieren.

Transport

Krantransport

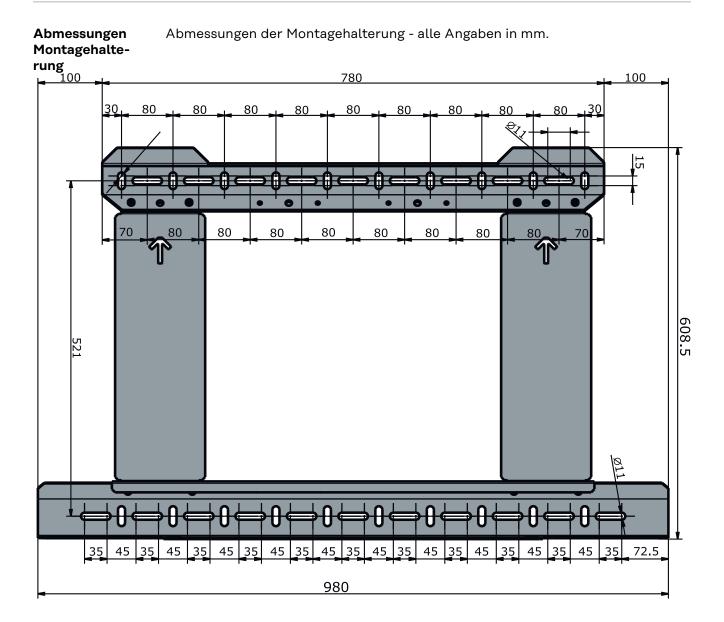
MARNUNG!

Gefahr schwerwiegender Personenund Sachschäden durch umstürzende oder herabfallende Gegenstände.

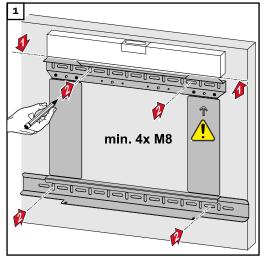
Bei Krantransport:

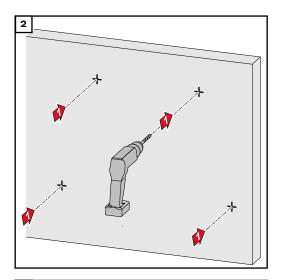
- ► Ketten und Seile nur an den Aufhängungspunkten einhängen
- Ketten und Seile immer an beiden Aufhängungspunkten einhängen

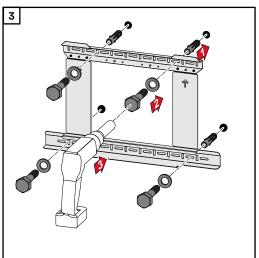
Transport mittels Gabelstapler oder Hubwagen

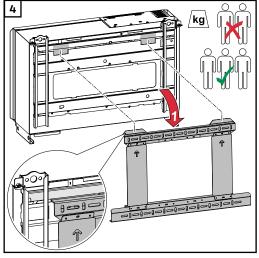

MARNUNG!

Herabfallende oder umstürzende Geräte können Lebensgefahr bedeuten.

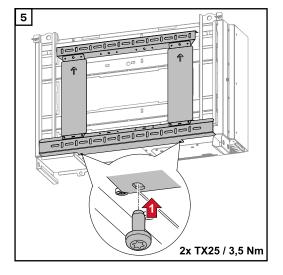

- ▶ Beim Transport des Wechselrichters mittels Gabelstapler oder Hubwagen den Wechselrichter gegen Umfallen sichern.
- keine ruckartigen Richtungsänderungen, Brems- oder Beschleunigungsaktionen durchführen

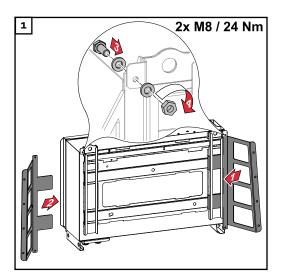

Wechselrichter montieren

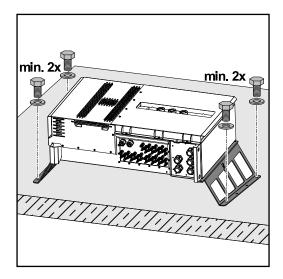

Auswahl des Befestigungsmaterials Je nach Untergrund entsprechende Befestigungsmaterialien verwenden sowie die Empfehlung der Schraubendimension für die Montagehalterung beachten. Der Monteur ist für die richtige Auswahl des Befestigungsmaterials selbst verantwortlich.



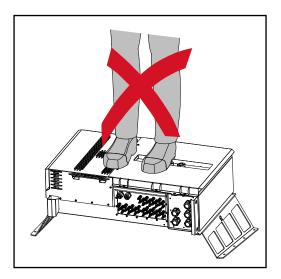
Wechselrichter an der Wand montieren






Die lokalen Bestimmungen zum Heben von schweren Lasten beachten, oder Gerät mittels Kran an den Kranösen heben

Zur Befestigung des Wechselrichters an der Montagehalterung, nur die im Lieferumfang enthaltenen Schrauben verwenden. Wechselrichter auf Floor Racks montieren


Die Floor Racks können als optionales Zubehör bestellt werden.

Das Befestigen des Wechselrichters auf einer horizontalen Montagefläche ist nicht zwingend erforderlich, wird aber empfohlen.

Je nach Untergrund sind unterschiedliche Dübel und Schrauben für die Bodenmontage der Floor Racks erforderlich. Dübel und Schrauben sind daher nicht im Lieferumfang des Wechselrichters enthalten. Der Monteur ist für die richtige Auswahl von passenden Dübeln und Schrauben selbst verantwortlich.

Wechselrichter und Floor Racks mit passendem Montagematerial fest auf einer geeigneten Fläche montieren

Nicht auf das Gerät steigen!

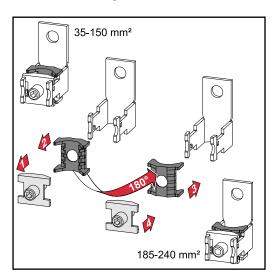
Wechselrichter am öffentlichen Netz anschließen (AC-Seite)

Netzüberwachung

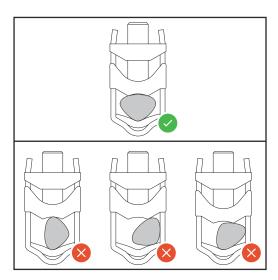
WICHTIG! Für eine optimale Funktion der Netzüberwachung muss der Widerstand in den Zuleitungen zu den AC-Anschlüssen so gering wie möglich sein.

Anschluss von Aluminiumkabeln

An den AC-Anschlüssen können auch Aluminiumkabel angeschlossen werden.


HINWEIS!

Beim Anschließen von Aluminiumkabeln:

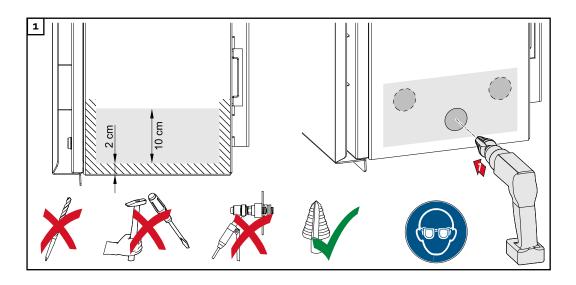

- nationale und internationale Richtlinien zum Anschließen von Aluminiumkabeln berücksichtigen
- ► Um die Aluminium-Litzen vor Oxidation zu schützen, diese mit einem dafür geeignetem Fett einfetten.
- Angaben des Kabelherstellers beachten

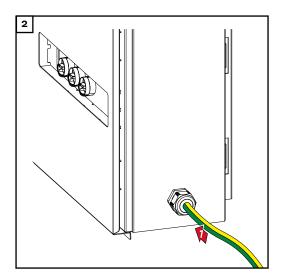
Klemmbereich bei V-Klemme umstellen

Der Klemmbereich der V-Klemme beträgt im Auslieferungszustand 35 - 150 mm². Durch einen einfachen Umbau der V-Klemme kann der Klemmbereich auf 185 - 240 mm² geändert werden.

Sektorförmige Leiter bei der V-Klemme

Zusätzliche PE-Einführung für Erdung


Auf der rechten Gehäuseseite im unteren Bereich kann eine optionale Bohrung für eine zusätzliche PE-Einführung gemacht werden.


№ VORSICHT!

Gefahr durch fehlerhafte oder unsachgemäße Bohrungen.

Verletzungen an Augen und Händen durch herumfliegende Teile und scharfe Kanten, sowie Schäden am Wechselrichter können die Folge sein.

- ▶ Beim Bohren eine geeignete Schutzbrille tragen.
- Nur einen Stufenbohrer für das Aufbohren verwenden.
- ▶ Darauf achten, dass im Geräteinneren nichts beschädigt wird (beispielsweise Anschlussblock).
- ▶ Durchmesser der Bohrung an den jeweiligen Anschluss anpassen.
- ▶ Die Bohrungen mit einem geeigneten Werkzeug entgraten.
- ▶ Bohrreste aus dem Wechselrichter entfernen.

Verschraubung in die Bohrung einsetzen und mit dem vom Hersteller angegebenen Drehmoment befestigen.

Die Öffnung muss entsprechend der Schutzart des Wechselrichters abgedichtet werden!

Sicherheit

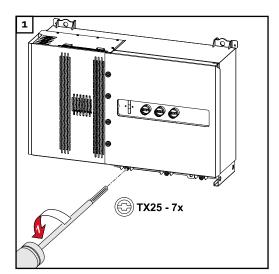
MARNUNG!

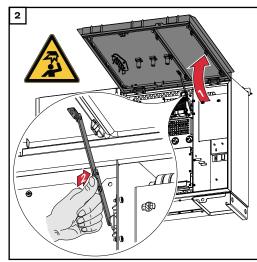
Gefahr durch Netzspannung und DC-Spannung von den Solarmodulen.

Ein elektrischer Schlag kann tödlich sein.

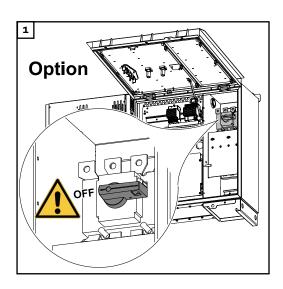
- ▶ Vor sämtlichen Anschlussarbeiten dafür sorgen, dass AC- und DC-Seite vor dem Wechselrichter spannungsfrei sind.
- ▶ Der fixe Anschluss an das öffentliche Stromnetz darf nur von einem konzessionierten Elektroinstallateur hergestellt werden.

∴ VORSICHT!

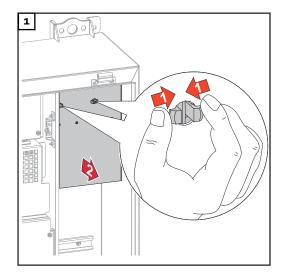

Beschädigungsgefahr des Wechselrichters durch nicht ordnungsgemäß angezogene Kabelanschlüsse.

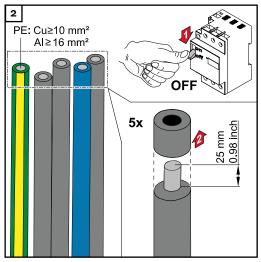

Nicht ordnungsgemäß angezogene Kabelanschlüsse können thermische Schäden am Wechselrichter verursachen und in Folge zu Bränden führen.

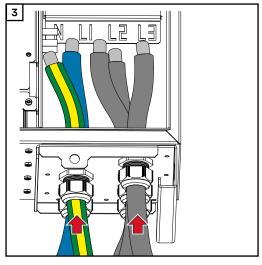
▶ Beim Anschließen von AC- und DC-Kabeln darauf achten, dass alle Kabel mit dem angegebenen Drehmoment fest an den Anschlüssen des Wechselrichters angezogen sind.

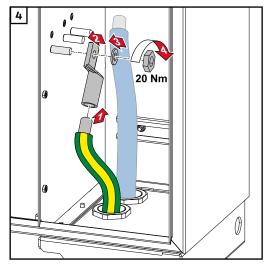

WICHTIG! Für den PE-Anschluss sind zusätzlich die unter "Sicherheitsvorschriften" definierten Anforderungen für einen sicheren Anschluss des PE-Leiter zu beachten

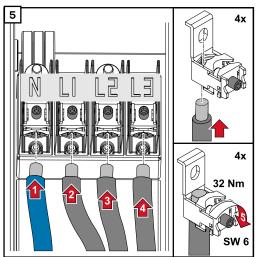
Wechselrichter öffnen

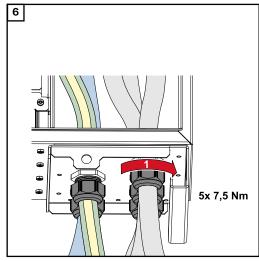


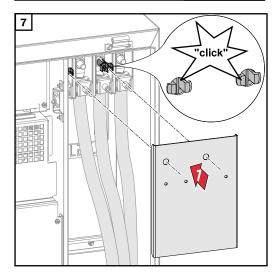

Option AC-Trenner ausschalten

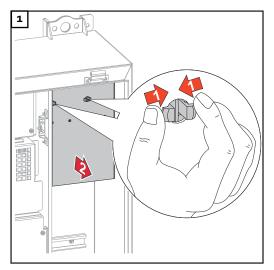


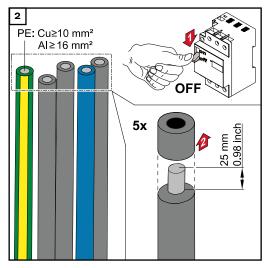

Wechselrichter am öffentlichen Netz anschließen - Singlecore

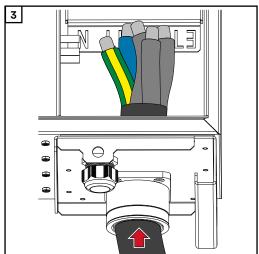

Beim Anschließen auf korrekte Reihenfolge der Phasen achten: PE, N, L1, L2 und L3.

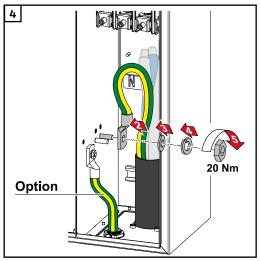


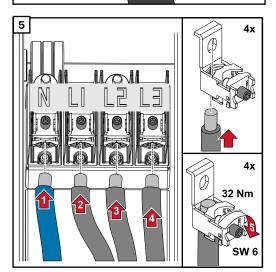


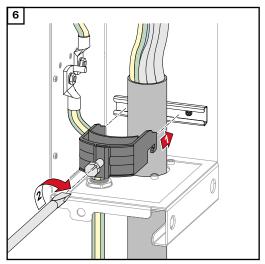


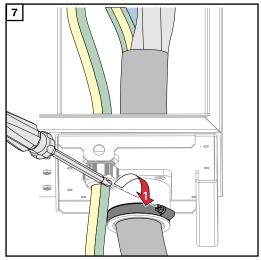


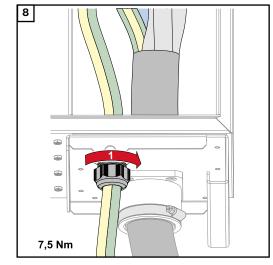


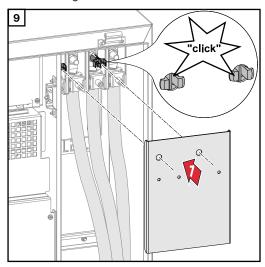

Wechselrichter am öffentlichen Netz anschließen - Multicore


Beim Anschließen auf korrekte Reihenfolge der Phasen achten: PE, N, L1, L2 und L3.

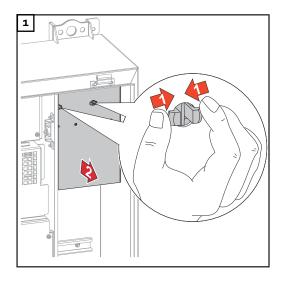


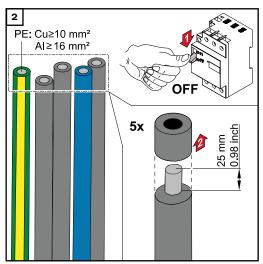


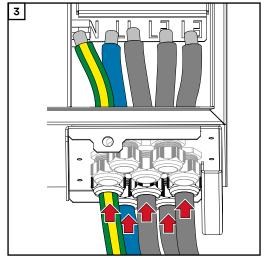


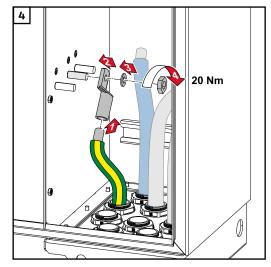


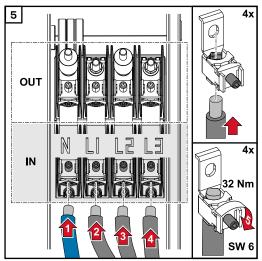
Mit dem vom Hersteller der Zugentlastung angegebenen Drehmoment befestigen. Die Zugentlastung ist nicht Teil des Lieferumfanges.

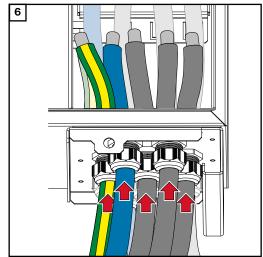


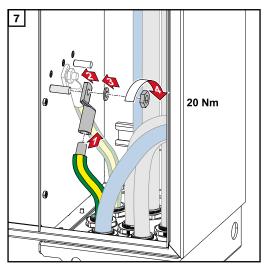

Mit dem vom Hersteller angegebenen Drehmoment befestigen

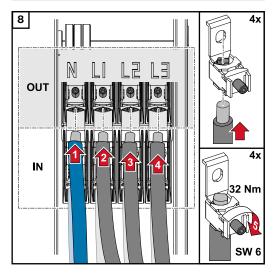


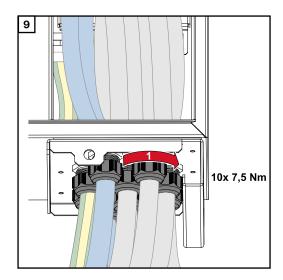

Wechselrichter am öffentlichen Netz anschließen - Daisy Chain

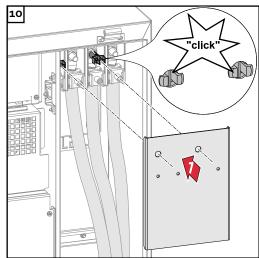

Beim Anschließen auf korrekte Reihenfolge der Phasen achten: PE, N, L1, L2 und L3.

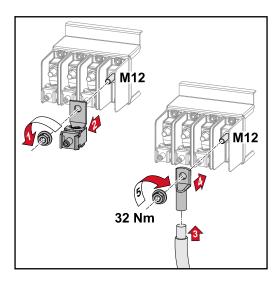












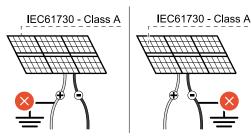
Kabel mit Kabelschuh anschließen Alternativ zum Anschließen der Kabel an den V-Klemmen können die Kabel mit Kabelschuh am M12 Gewindebolzen der Anschlüsse angeschlossen werden.

PV-Kabel am Wechselrichter anschließen

Allgemeines über Solarmodule

Für die geeignete Auswahl der Solarmodule und eine möglichst wirtschaftliche Nutzung des Wechselrichters folgende Punkte beachten:

- Die Leerlauf-Spannung der Solarmodule nimmt bei konstanter Sonneneinstrahlung und sinkender Temperatur zu. Die Leerlauf-Spannung darf die max. zulässige Systemspannung nicht überschreiten. Eine Leerlauf-Spannung über den angegebenen Werten führt zur Zerstörung des Wechselrichters, sämtliche Gewährleistungs-Ansprüche erlöschen.
- Temperatur-Koeffizient am Datenblatt der Solarmodule beachten.
- Exakte Werte für die Dimensionierung der Solarmodule liefern hierfür geeignete Berechnungsprogramme, wie z. B. der Fronius Solar.creator.


WICHTIG!

Vor Anschluss der Solarmodule überprüfen, ob der für die Solarmodule aus den Herstellerangaben ermittelte Spannungswert mit der Realität übereinstimmt.

WICHTIG!

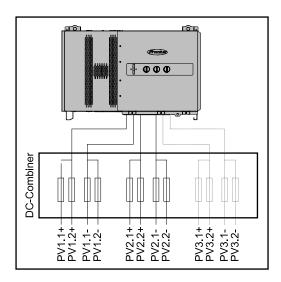
Die am Wechselrichter angeschlossenen Solarmodule müssen die Norm IEC 61730 Class A erfüllen.

WICHTIG!

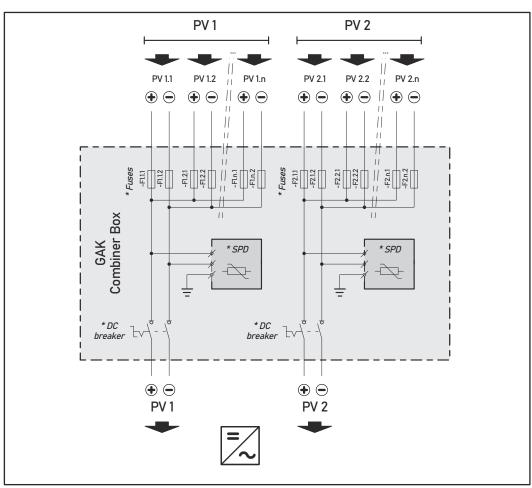
Solarmodule-Stränge dürfen nicht geerdet werden.

max. 1000 V_{DC}

DC-Absicherung pre-combined

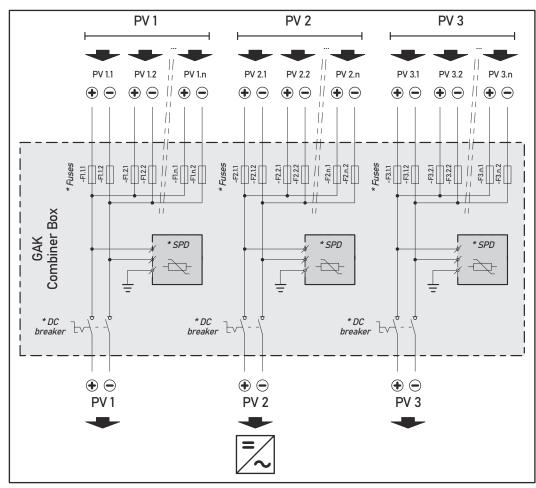

$\hat{\Lambda}$

VORSICHT!


Beschädigungsgefahr des Wechselrichters durch nicht ordnungsgemäß abgesicherte PV-Leitungen.

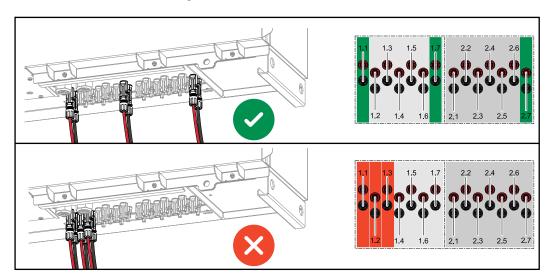
Nicht abgesicherte PV-Leitungen bei der Gerätevariante "pre-combined" können zu Schäden am Wechselrichter führen.

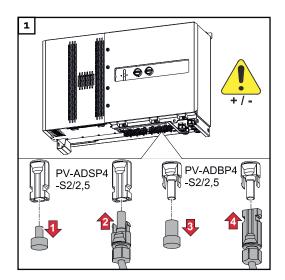
PV-Leitungen müssen in einer Sammelbox vor dem Wechselrichter (Variante "pre-combined) abgesichert werden.



Beispiel Sammelbox Fronius Tauro Eco 50-3-P / 99-3-P / 100-3-P

* DC-Sicherung optional je nach Ländernorm / DC-Unterbrecher optional / DC-SPD optional

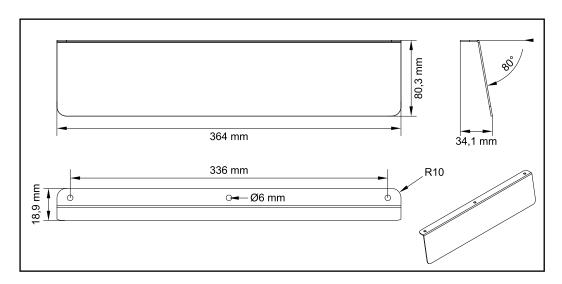

Beispiel Sammelbox Fronius Tauro 50-3-P

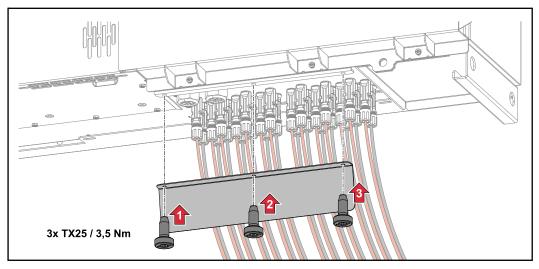

* DC-Sicherung optional je nach Ländernorm / DC-Unterbrecher optional / DC-SPD optional

Aufteilung der Solarmodul-Stränge bei der direct-Variante Die vorhandenen Solarmodul-Stränge gleichmäßig auf die PV-Eingänge (PV1 / PV2 / PV3) des Wechselrichters aufteilen.

Zuerst mit den ungeraden Eingängen beginnen und erst danach die geraden Eingänge auffüllen, um die Leistung möglichst gleichmäßig aufzuteilen und die Lebensdauer der Sicherungen zu erhöhen, z.B.: (1.1, 2.1, 3.1, 1.3, 2.3...)

PV-Kabel anschließen - MC4 Stecker

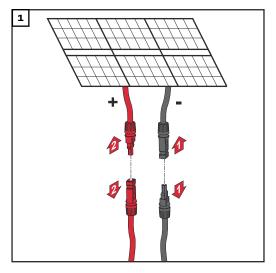


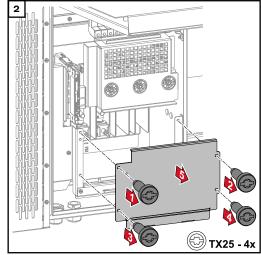

PV-Kabel von den Solarmodulen an den MC4 Steckern laut Beschriftung anschließen

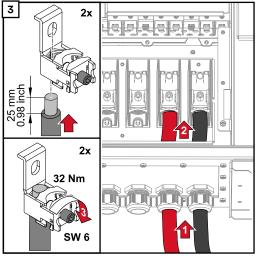
Nicht verwendete MC4 Stecker am Wechselrichter müssen durch die mit dem Wechselrichter mitgelieferten Abdeckkappen verschlossen sein.

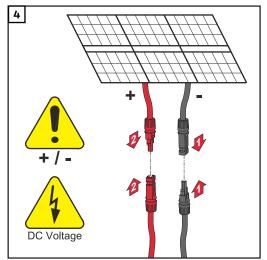
MC4 Stecker Abdeckung

Um die MC4 Stecker zu schützen, kann ein Abdeckblech am Wechselrichter montiert werden. Das Abdeckblech kann als optionales Zubehör gemeinsam mit den Floor Racks bestellt werden.

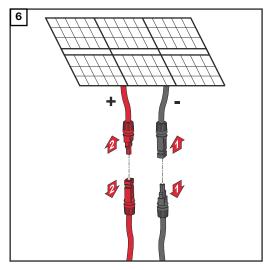



PV-Kabel anschließen - Precombined

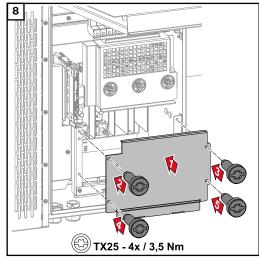

Solarmodul-Stränge die in einer DC-Sammelbox zusammengeführt werden, müssen in der DC-Sammelbox, laut jeweils gültiger nationaler Vorschrift, pro Strang abgesichert werden!

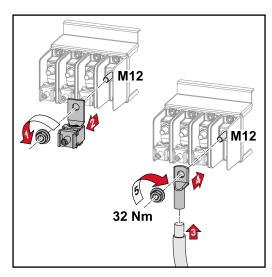


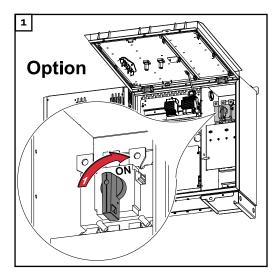
Vor Arbeiten im Anschlussbereichs des Wechselrichters muss die DC-Spannnung abgeschaltet werden. Dies kann auch in der DC-Sammelbox geschehen.

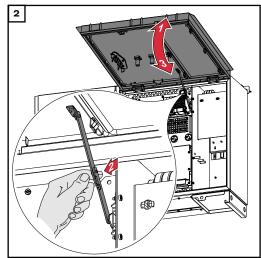


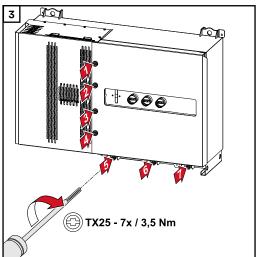


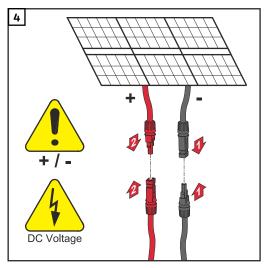




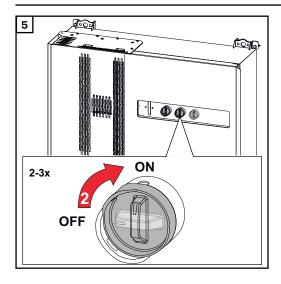




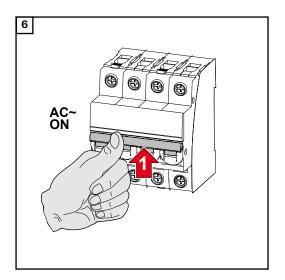

Kabel mit Kabelschuh anschließen Alternativ zum Anschließen der Kabel an den V-Klemmen können die Kabel mit Kabelschuh am M12 Gewindebolzen der Anschlüsse angeschlossen werden.



Wechselrichter schließen und einschalten



MARNUNG!


Gefahr durch nicht ordnungsgemäß eingeschaltete DC-Trenner

Schwerwiegende Personen- und Sachschäden können die Folge sein.

- ► Alle vorhanden DC-Trenner auf ON (Ein) schalten, bevor die AC-Verbindung eingeschaltet wird.
- ▶ Die DC-Trenner dürfen immer nur gleichzeitig (unmittelbar nacheinander) betätigt werden.

Der WLAN Accesspoint kann mit dem optischen Sensor geöffnet werden, siehe Kapitel Button-Funktionen und LED Statusanzeige auf Seite 24

Datenkommunikations-Kabel anschließen

Modbus Teilnehmer

Die Eingänge M0 und M1 können frei gewählt werden. An der Modbus Anschlussklemme können auf den Eingängen M0 und M1 jeweils max. 4 Modbus Teilnehmer angeschlossen werden.

WICHTIG!

Wird die Funktion "Wechselrichter-Steuerung über Modbus" im Menübereich "Kommunikation" → "Modbus" aktiviert, sind keine Modbus Teilnehmer möglich. Daten senden und empfangen ist zum selben Zeitpunkt nicht möglich.

Zulässige Kabel für den Datenkommunikations-Bereich

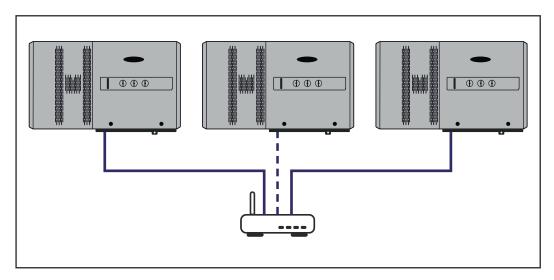
An den Anschlussklemmen des Wechselrichters können Kabel mit folgendem Aufbau angeschlossen werden:

- Kupfer: rund eindrähtig

Kupfer: rund feindrähtig

WSD-Anso	WSD-Anschlüsse mit Push-in Anschlussklemme						
Distanz max.	Abiso- lierlänge	Eindrähtig	Feindrähtig	Feindrähtig mit Ader- endhülsen mit Kragen	Feindrähtig mit Ader- endhülsen ohne Kragen	Kabelemp- fehlung	
100 m	10 mm	0,14 - 1,5 mm ²	0,14 - 1,5 mm ²	0,14 - 1 mm ²	0,14 - 1,5 mm ²	min. CAT 5 UTP	

Modbus-A	Modbus-Anschlüsse mit Push-in Anschlussklemme					
Distanz max.	Abiso- lierlänge	Eindrähtig	Feindrähtig	Feindrähtig mit Ader- endhülsen mit Kragen	Feindrähtig mit Ader- endhülsen ohne Kragen	Kabelemp- fehlung
300 m	10 mm	0,14 - 1,5 mm ²	0,14 - 1,5 mm ²	0,14 - 1 mm ²	0,14 - 1,5 mm ²	min. CAT 5 STP

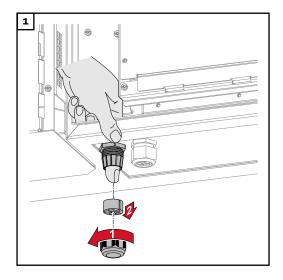

IO-Anschl	IO-Anschlüsse mit Push-in Anschlussklemme					
Distanz max.	Abiso- lierlänge	Eindrähtig	Feindrähtig	Feindrähtig mit Ader- endhülsen mit Kragen	Feindrähtig mit Ader- endhülsen ohne Kragen	Kabelemp- fehlung
30 m	10 mm	0,14 - 1,5 mm ²	0,14 - 1,5 mm ²	0,14 - 1 mm ²	0,14 - 1,5 mm ²	Einzelleiter möglich

LAN-Anschlüsse

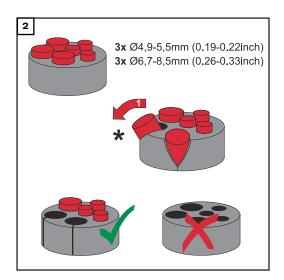
Fronius empfiehlt mindestens CAT 5 STP (Shielded Twisted Pair) Kabel und eine maximale Distanz von 100m.

Mehrere Wechselrichter in einem Netzwerk

Die Netzwerkverkabelung der Wechselrichter muss sternförmig erfolgen. Die maximalen Längen und Anforderungen an das Kabel beachten!

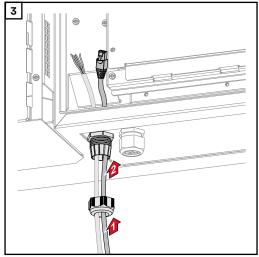

Datenkommunikations-Kabel verlegen

Um die Verbindung zu Fronius Solar.web oder Modbus TCP nutzen zu können, muss jeder Tauro direkt mit dem Netzwerk über LAN verbunden werden.

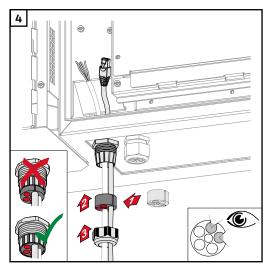

WICHTIG! Werden Datenkommunikations-Kabel in den Wechselrichter eingeführt, folgende Punkte beachten:

- Je nach Anzahl und Querschnitt der eingeführten Datenkommunikations-Kabel die entsprechenden Blindstopfen aus dem Dichtungseinsatz entfernen und die Datenkommunikations-Kabel einsetzen.
- In freie Öffnungen am Dichtungseinsatz unbedingt die entsprechenden Blindstopfen einsetzen.

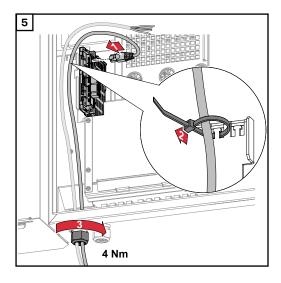
Hinweis! Bei fehlenden oder unsachgemäß eingesetzten Blindstopfen kann die Schutzklasse IP65 nicht gewährleistet werden.



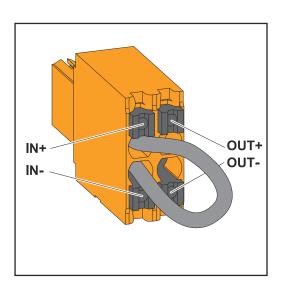
Hutmutter der Zugentlastung lösen und den Dichtungsring mit den Blindstopfen von der Innenseite des Gerätes herausdrücken.



Den Dichtungsring an der Stelle, an welcher der Blindstopfen entfernt werden soll, aufspreizen.


* Den Blindstopfen mit einer Seitwärtsbewegung herauslösen.

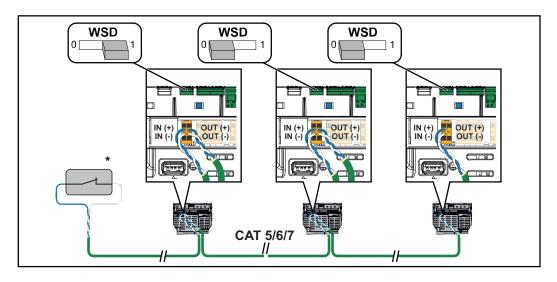
Datenkabel zuerst durch die Hutmutter der Zugentlastung und danach durch die Gehäuseöffnung führen.



Dichtungsring zwischen der Hutmutter und der Gehäuseöffnung einsetzen. Die Datenkabel in die Kabelführung der Dichtung eindrücken. Danach die Dichtung bis zur Unterkante der Zugentlastung hineindrücken.

Datenkabel am Datenkommunikations-Bereich mit einer Bewegungsschlaufe anschließen und die Hutmutter mit min. 2,5 - max. 4 Nm befestigen.

WSD (Wired Shut Down)


WICHTIG!

Die Push-in Anschlussklemme WSD im Anschlussbereich des Wechselrichters, wird ab Werk standardmäßig mit einer Überbrückung ausgeliefert. Bei der Installation von einer Auslöseeinrichtung oder einer WSD-Kette muss die Überbrückung entfernt werden.

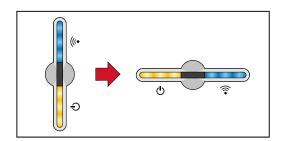
Beim ersten Wechselrichter mit angeschlossener Auslöseeinrichtung in der WSD-Kette, muss sich der WSD-Schalter auf Position 1 (Primärgerät) befinden. Bei allen weiteren Wechselrichtern befindet sich der WSD-Schalter auf Position 0 (Sekundärgerät).

Max. Abstand zwischen zwei Geräten: 100 m

Max. Anzahl der Geräte: 28

* Potentialfreier Kontakt der Auslöseeinrichtung (z. B. zentraler NA-Schutz). Werden mehrere potentialfreie Kontakte in einer WSD-Kette verwendet sind diese in Serie zu verschalten.

Erstinbetriebnahme


Erst-Inbetriebnahme des Wechselrichters

Bei der Erst-Inbetriebnahme des Wechselrichters müssen verschiedene Setup-Einstellungen vorgenommen werden.

Wenn das Setup vor der Fertigstellung abgebrochen wird, werden die eingegebenen Daten nicht gespeichert und der Start-Bildschirm mit dem Installations-Assistenten wird erneut angezeigt. Bei einer Unterbrechung durch z. B. Netzausfall werden die Daten gespeichert. Die Inbetriebnahme wird nach aufrechter Netzversorgung an der Stelle der Unterbrechung erneut fortgesetzt. Wenn das Setup unterbrochen wurde, speist der Wechselrichter mit maximal 500 W ins Netz ein und die Betriebs-LED blinkt gelb.

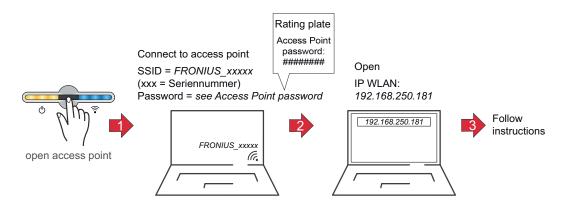
Das Länder-Setup kann nur bei der Erst-Inbetriebnahme des Wechselrichters eingestellt werden. Falls das Länder-Setup nachträglich geändert werden muss, wenden Sie sich an Ihren Installateur / Technischen Support.

Darstellung Fronius Anlagenüberwachung (Pilot)

Um die Darstellung zu vereinfachen, wird im folgenden die vertikale Einbaulage des Prints Pilot (LED-Anzeige) horizontal dargestellt.

Installation mit der App

Für die Installation wird die App "Fronius Solar.start" benötigt. Abhängig von dem Endgerät, mit dem die Installation durchgeführt wird, ist die App auf der jeweiligen Plattform erhältlich.



- Die Fronius Solar.start App herunterladen und installieren.
- Den Access Point durch Berühren des Sensors ⊕ öffnen → Kommunikations-LED blinkt blau.
- 3 Den QR-Code am Leistungsschild mit Smartphone oder Tablet scannen.
- Dem Installationsassistenten in den einzelnen Bereichen folgen und die Installation abschließen.
- 5 Systemkomponenten im Solar.web hinzufügen und die PV-Anlage in Betrieb nehmen.

Der Netzwerk-Assistent und das Produkt-Setup können unabhängig voneinander durchgeführt werden. Für den Solar.web Installations-Assistenten wird eine Netzwerk-Verbindung benötigt.

Installation mit dem Browser

WLAN:

- Den Access Point durch Berühren des Sensors ⊕ öffnen → Kommunikations-LED blinkt blau.
- Die Verbindung zum Wechselrichter in den Netzwerkeinstellungen herstellen (der Wechselrichter wird mit dem Namen "FRONIUS_" und der Seriennummer des Geräts angezeigt).
- 3 Das Passwort vom Leistungsschild eingeben und bestätigen.

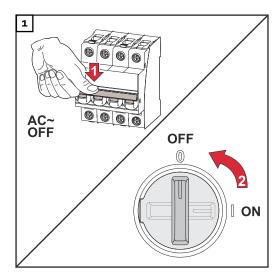
WICHTIG!

Für die Passwort-Eingabe unter Windows 10 muss zuerst der Link "Verbindung stattdessen unter Verwendung eines Netzwerksicherheitsschlüssel" aktiviert werden, um die Verbindung mit dem Passwort herstellen zu können.

- In der Adressleiste des Browsers die IP-Adresse 192.168.250.181 eingeben und bestätigen. Der Installationsassistent wird geöffnet.
- Dem Installationsassistenten in den einzelnen Bereichen folgen und die Installation abschließen.
- Die Systemkomponenten im Solar.web hinzufügen und die PV-Anlage in Betrieb nehmen.

Der Netzwerk-Assistent und das Produkt-Setup können unabhängig voneinander durchgeführt werden. Für den Solar.web Installationsassistenten wird eine Netzwerk-Verbindung benötigt.

Ethernet:


- Die Verbindung zum Wechselrichter (LAN1) mit einem Netzwerkkabel (CAT5 STP oder höher) herstellen.
- 2 Den Access Point durch Berühren des Sensors 1x ⊕ öffnen → Kommunikations-LED: blinkt blau.
- In der Adressleiste des Browsers die IP-Adresse 169.254.0.180 eingeben und bestätigen. Der Installationsassistent wird geöffnet.

- Dem Installationsassistenten in den einzelnen Bereichen folgen und die Installation abschließen.
- Die Systemkomponenten im Solar.web hinzufügen und die PV-Anlage in Betrieb nehmen.

Der Netzwerk-Assistent und das Produkt-Setup können unabhängig voneinander durchgeführt werden. Für den Solar.web Installationsassistenten wird eine Netzwerk-Verbindung benötigt.

Wechselrichter stromlos schalten und wieder einschalten

Wechselrichter stromlos schalten und wieder einschalten

- 1. Den Leitungs-Schutzschalter ausschalten.
- 2. DC-Trenner auf Schalterstellung "Aus" schalten.

Für die Wieder-Inbetriebnahme des Wechselrichters die zuvor angeführten Arbeitsschritte in umgekehrter Reihenfolge ausführen.

Einstellungen - Benutzeroberfläche des Wechselrichters

Benutzereinstellungen

Benutzeranmeldung

- Die Benutzeroberfläche des Wechselrichters im Browser aufrufen.
- Im Menübereich "Anmelden" mit Benutzernamen und Passwort anmelden, oder im Menübereich "Benutzer" die Schaltfläche "Benutzeranmeldung" klicken und mit Benutzernamen und Passwort anmelden.

WICHTIG!

Abhängig von der Berechtigung des Benutzers können Einstellungen in den einzelnen Menübereichen getätigt werden.

Sprache auswählen

Im Menübereich "Benutzer" die Schaltfläche "Sprache" klicken und die gewünschte Sprache auswählen.

Gerätekonfiguration

Komponenten

Über "Komponente hinzufügen+" werden alle vorhandenen Komponenten dem System hinzugefügt.

PV-Generator

Den jeweiligen PV Generator aktivieren und im zugehörigen Feld die angeschlossene PV-Leistung eintragen.

Primärzähler

Für einen einwandfreien Betrieb mit weiteren Energie-Erzeugern ist es wichtig, dass der Fronius Smart Meter am Einspeisepunkt montiert ist. Der Wechselrichter und weitere Erzeuger müssen über den Fronius Smart Meter mit dem öffentlichen Netz verbunden sein.

Diese Einstellung hat auch Auswirkung auf das Verhalten des Wechselrichters in der Nacht. Ist die Funktion deaktiviert, schaltet der Wechselrichter in den Standby-Betrieb sobald keine PV-Leistung mehr vorhanden ist. Es erscheint die Meldung "Power low". Der Wechselrichter startet wieder, sobald ausreichend PV-Leistung vorhanden ist.

Nach Anschluss des Zählers muss die Position konfiguriert werden.

Es können mehrere Fronius Smart Meter im System verbaut werden. Es muss für jeden Smart Meter eine eigene Adresse eingestellt werden.

Der Watt-Wert bei Erzeugerzähler ist die Summe aller Erzeugerzähler. Der Watt-Wert bei Verbraucherzähler ist die Summe aller Verbraucherzähler.

Ohmpilot

Alle im System verfügbaren Ohmpiloten werden angezeigt. Den gewünschten Ohmpiloten auswählen und über "Hinzufügen" dem System hinzufügen.

Funktionen und IOs

Lastmanagement

Hier können bis zu vier Pins für das Lastmanagement ausgewählt werden. Weitere Einstellungen für das Lastmanagement sind im Menüpunkt Lastmanagement verfügbar.

Default: Pin 1

AUS - Demand Response Mode (DRM)

Hier können die Pins für eine Steuerung via DRM eingestellt werden:

Mode	Beschreibung	Information	De- fault- Pin
DRMo	Wechselrichter trennt sich vom Netz	Netzrelais öffnen	
	REF GEN		RGo
	COM LOAD		CLO
		DRMo tritt bei Unterbrechung sowie Kurzschluss an REF GEN oder COM LOAD Leitun- gen ein. Oder bei ungültigen Kombinationen von DRM1 - DRM8.	

WICHTIG!

Ist die Funktion Demand Response Mode (DRM) aktiviert und keine DRM-Steuerung angeschlossen, wechselt der Wechselrichter in den Standby-Betrieb.

EVU Editor -AUS - Demand Response Modes (DRM) Hier kann für das Ländersetup Australien ein Wert für die Scheinleistungsaufnahme und die Scheinleistungsabgabe eingetragen werden.

Demand Response Modes (DRM)

Hier kann für das Länder-Setup Australien ein Wert für die Scheinleistungs-Aufnahme und die Scheinleistungs-Abgabe eingetragen werden.

Wechselrichter

"Standby erzwingen"

Bei der Aktivierung der Funktion wird der Einspeise-Betrieb des Wechselrichters unterbrochen. Dadurch ist ein leistungsloses Abschalten des Wechselrichters möglich und dessen Komponenten werden geschont. Beim Neustart des Wechselrichters wird die Standby-Funktion automatisch deaktiviert.

"PV 1" und "PV 2"

Parameter	Wertebereich	Beschreibung
"Modus"	Aus	Der MPP-Tracker ist deaktiviert.
	Auto	Der Wechselrichter verwendet die Span- nung, bei der die max. mögliche Leistung des MPP-Trackers möglich ist.
	Fix	Der MPP-Tracker verwendet die im "UDC fix" definierte Spannung.
"UDC fix"	80 - 530 V	Der Wechselrichter verwendet die fix vorgegebene Spannung, die am MPP-Tracker verwendet wird.

Parameter	Wertebereich	Beschreibung
"Dynamik Peak	Aus	Funktion ist deaktiviert.
Manager"	Ein	Der gesamte Solarmodul-Strang wird auf Optimierungspotential überprüft und er- mittelt die bestmögliche Spannung für den Einspeise-Betrieb.

"Rundsteuersignal"

Rundsteuersignale sind Signale, die vom Energieunternehmen ausgesendet werden, um steuerbare Lasten ein- und auszuschalten. Je nach Installationssituation kann es zur Dämpfung oder Verstärkung von Rundsteuersignalen durch den Wechselrichter kommen. Mit den nachstehenden Einstellungen kann bei Bedarf entgegengewirkt werden.

Parameter	Wertebereich	Beschreibung
"Reduktion der	Aus	Funktion ist deaktiviert.
Beeinflussung"	Ein	Funktion ist aktiviert.
"Frequenz des Rundsteuersi- gnals"	100 - 3000 Hz	Hier ist der vom Energieunternehmen vorgegebene Frequenz einzutragen.
"Netz-Indukti- vität"	0,00001 - 0,00 5 H	Hier ist der am Einspeisepunkt gemessene Wert einzutragen.

"Maßnahmen gegen FI/RCMU-Fehlauslösungen" (bei Verwendung eines 30 mA Fehlerstrom-Schutzschalters)

Parameter	Wertebereich	Beschreibung
"Wechselrich- ter Abschaltung	0	Keine Maßnahmen zur Verhinderung von Fehlauslösungen.
vor 30 mA FI- Auslösungen"	1	Der Wechselrichter schaltet bei 15 mA ab, bevor es zur Auslösung des Fehlerstrom- Schutzschalters kommt.

"Iso Warnung"

Parameter	Wertebereich	Beschreibung
"Iso Warnung"	Aus	Die Isolationswarnung ist deaktiviert.
	Ein	Die Isolationswarnung ist aktiviert. Bei einem Isolationsfehler wird eine Warnung ausgegeben.
"Modus der Iso- lationsmes- sung"	Genau	Die Isolationsüberwachung erfolgt mit höchster Genauigkeit und der gemessene Isolationswiderstand wird auf der Benut- zeroberfläche des Wechselrichters ange- zeigt.
	Schnell	Die Isolationsüberwachung wird mit geringerer Genauigkeit durchgeführt, wodurch sich die Dauer der Isolationsmessung verkürzt und der Isolationswert nicht auf der Benutzeroberfläche des Wechselrichters angezeigt wird.

Parameter	Wertebereich	Beschreibung
"Schwellenwert für die Isolati- onswarnung"	10 - 10 000 kΩ	Bei Unterschreitung dieses Schwellenwertes wird auf der Benutzeroberfläche des Wechselrichters die Statusmeldung 1083 angezeigt.

System

Allgemein

Allgemeine Einstellungen

- Im Eingabefeld "Anlagenname" den Namen der Anlage eingeben (max. 30 Zeichen).
- **"Uhrzeit automatisch synchronisieren"** aktiviert → "Zeitzone Gebiet" und "Zeitzone Ort" auswählen. Datum und Zeit werden von der eingegebenen Zeitzone übernommen.
- **"Uhrzeit automatisch synchronisieren"** deaktiviert → "Datum", "Uhrzeit", "Zeitzone Gebiet" und "Zeitzone Ort" eingeben bzw. auswählen.
- 3 Die Schaltfläche "Speichern" klicken.

Update

Alle verfügbaren Updates werden auf der Produktseite sowie in dem Bereich der "Download Suche" unter **www.fronius.com** bereitgestellt.

Firmware Aktualisierung

Die Firmware-Datei in das "Datei hier ablegen" Feld ziehen, oder über "Datei auswählen" auswählen.

Update wird gestartet.

Inbetriebnahme-Assistent

Hier kann der geführte Inbetriebnahme-Assistent aufgerufen werden.

Werkseinstellungen wiederherstellen

Alle Einstellungen

Es werden alle Konfigurationsdaten zurückgesetzt, außer das Länder-Setup. Änderungen am Länder-Setup dürfen nur durch autorisiertes Personal durchgeführt werden.

Alle Einstellungen ohne Netzwerk

Es werden alle Konfigurationsdaten zurückgesetzt, außer das Länder-Setup und die Netzwerk-Einstellungen. Änderungen am Länder-Setup dürfen nur von autorisiertem Personal durchgeführt werden.

Event-Log

Aktuelle Meldungen

Hier werden alle aktuellen Events der verbundenen Systemkomponenten angezeigt.

WICHTIG!

Abhängig von der Art des Events müssen diese über die Schaltfläche "Häkchen" bestätigt werden, um weiter verarbeitet werden zu können.

Historie

Hier werden alle Events der verbundenen Systemkomponenten angezeigt, die nicht mehr vorliegen.

Information

In diesem Menübereich werden alle Informationen zum System und die aktuellen Einstellungen angezeigt.

Als PDF speichern

- Die Schaltfläche "Als PDF speichern" klicken.
- Die Information mit dem "Häkchen" neben der Information einzeln oder mit dem Häkchen "Alle auswählen" auswählen.
- Dateinamen in das Eingabefeld eingeben und auf die Schaltfläche "Speichern" klicken.

Das PDF wird erzeugt und angezeigt.

Lizenzmanager

In der Lizenzdatei sind die Leistungsdaten sowie der Funktionsumfang des Wechselrichters hinterlegt. Beim Austausch des Wechselrichters, Leistungsteils oder Datenkommunikations-Bereichs muss auch die Lizenzdatei ausgetauscht werden.

Lizenzierung - Online (empfohlen):

Hierfür wird eine Internetverbindung und eine abgeschlossene Konfiguration vom Solar.web benötigt.

- Installationsarbeiten abschließen (siehe Kapitel **Erstinbetriebnahme** auf Seite **60**).
- Verbindung zu der Benutzeroberfläche des Wechselrichters herstellen.
- 3 Seriennummer und Verfikationscode (VCode) des defekten sowie Austauschgeräts eingeben. Die Seriennummer und der VCode befinden sich am Leistungsschild des Wechselrichters (siehe Kapitel Warnhinweise und Leistungsschild am Gerät auf Seite 13).
- 4 Die Schaltfläche "Online-Lizenzierung starten" klicken.
- Die Menüpunkte Nutzungsbedingungen und Netzwerk-Einstellungen mit "Weiter" überspringen.

Die Lizenz-Aktivierung wird gestartet.

Lizenzierung - Offline:

Hierfür darf keine Internetverbindung bestehen. Bei der Lizenzierung — Offline mit aufrechter Internetverbindung wird die Lizenzdatei automatisch auf den Wechselrichter geladen, daher kommt es beim Hochladen der Lizenzdatei zu folgendem Fehler: "die Lizenz wurde bereits installiert und der Assistent kann beendet werden".

- Installationsarbeiten abschließen (siehe Kapitel **Erstinbetriebnahme** auf Seite **60**).
- Verbindung zu der Benutzeroberfläche des Wechselrichters herstellen.
- 3 Seriennummer und Verfikationscode (VCode) des defekten sowie Austauschgeräts eingeben. Die Seriennummer und der VCode befinden sich am Leistungsschild des Wechselrichters (siehe Kapitel Warnhinweise und Leistungsschild am Gerät auf Seite 13).
- Die Schaltfläche "Offline-Lizenzierung starten" klicken.
- Die Service-Datei mit Klick auf die Schaltfläche "Service-Datei herunterladen" auf das Endgerät herunterladen.
- Die Webseite **licensemanager.solarweb.com** aufrufen und mit Benutzernamen und Passwort anmelden.
- Die Service-Datei in das "Service-Datei hierher ziehen oder zum Hochladen anklicken" Feld ziehen oder hochladen.

- Die neu generierte Lizenzdatei über die Schaltfläche "Lizenzdatei herunterladen" auf das Endgerät herunterladen.
- Auf die Benutzeroberfläche des Wechselrichters wechseln und die Lizenzdatei in das "Lizenzdatei hier ablegen" Feld ziehen oder über "Lizenzdatei auswählen" auswählen.

Die Lizenz-Aktivierung wird gestartet.

Support Support-User aktivieren

Die Schaltfläche "Support-User aktivieren" klicken.

Der Support-User ist aktiviert.

WICHTIG!

Der Support-User ermöglicht ausschließlich dem Fronius Technical Support über eine gesicherte Verbindung, Einstellungen am Wechselrichter vorzunehmen. Über die Schaltfläche "Support-User Zugang beenden" wird der Zugang deaktiviert.

Support-Info erstellen (für Fronius Support)

- Die Schaltfläche "Support-Info erstellen" klicken.
- Die Datei sdp.cry wird automatisch heruntergeladen. Für den manuellen Download die Schaltfläche "Download Support-Info" klicken.

Die Datei sdp.cry ist in den Downloads gespeichert.

Fernwartung aktivieren

Die Schaltfläche "Fernwartung aktivieren" klicken.

Der Fernwartungs-Zugang für den Fronius Support ist aktiviert.

WICHTIG!

Der Fernwartungs-Zugang ermöglicht ausschließlich dem Fronius Technical Support, über eine gesicherte Verbindung auf den Wechselrichter zuzugreifen. Dabei werden Diagnosedaten übermittelt, die zur Problembehandlung herangezogen werden. Den Fernwartungs-Zugang nur nach Aufforderung durch den Fronius Support aktivieren.

Kommunikation

Netzwerk

Server-Adressen für die Datenübertragung

Im Fall der Verwendung einer Firewall für ausgehende Verbindungen müssen die nachfolgenden Protokolle, Server-Adressen und Ports für die erfolgreiche Datenübertragung erlaubt sein:

- Tcp fronius-se-iot.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:8883
- Tcp fronius-se-iot-telemetry.azure-devices.net:443
- Udp sera-gen24.fronius.com:1194 (213.33.117.120:1194)
- Tcp froniusseiot.blob.core.windows.net:443
- Tcp provisioning.solarweb.com:443
- Tcp cure-se.fronius.com:443
- Upd/Tcp 0.time.fronius.com:123

Bei Verwendung von FRITZ!Box-Produkten muss der Internetzugang unbegrenzt und uneingeschränkt konfiguriert sein. Die DHCP Lease Time (Gültigkeit) darf nicht auf O (=unendlich) gesetzt werden.

LAN:

Verbindung herstellen:

- 1 Hostname eingeben.
- Art der Verbindung "automatisch" oder "statisch" auswählen.
- Bei Verbindungsart "statisch" IP-Adresse, Subnetz-Maske, DNS und Gateway eingeben.
- Schaltfläche "Verbinden" klicken.

Die Verbindung wird hergestellt. Nach dem Verbinden sollte der Status der Verbindung überprüft werden (siehe Kapitel "Internet Services" auf Seite 78).

WLAN:

Verbindung über WPS herstellen:

- Schaltfläche "Aktivieren" klicken.
- WPS am WLAN-Router aktivieren (siehe Dokumentation des WLAN-Routers).

Die Verbindung wird automatisch hergestellt. Nach dem Verbinden sollte der Status der Verbindung überprüft werden (siehe Kapitel "**Internet Services**" auf Seite **78**).

WLAN-Netzwerk auswählen und verbinden:

Die gefundenen Netzwerke werden in der Liste angezeigt. Mit einem Klick auf den Refresh-Button \circlearrowleft wird eine erneute Suche nach verfügbaren WLAN-Netzwerken ausgeführt. Über das Eingabefeld "Netzwerk suchen" kann die Auswahlliste weiter eingeschränkt werden.

1 Netzwerk aus der Liste auswählen.

- 2 Art der Verbindung "automatisch" oder "statisch" auswählen.
- Bei Verbindungsart "automatisch" WLAN-Passwort und Hostname eingeben
- Bei Verbindungsart "statisch" IP-Adresse, Subnetz-Maske, DNS und Gateway eingeben.
- 5 Schaltfläche "Verbinden" klicken.

Die Verbindung wird hergestellt. Nach dem Verbinden sollte der Status der Verbindung überprüft werden (siehe Kapitel "Internet Services" auf Seite 78).

Access Point:

Der Wechselrichter dient als Access Point. Ein PC oder Smart Device verbindet sich direkt mit dem Wechselrichter. Es ist keine Verbindung mit dem Internet möglich. In diesem Menübereich können "Netzwerk-Name (SSID)" und "Netzwerk-Schlüssel (PSK)" vergeben werden.

Es ist möglich, eine Verbindung über WLAN und über Access Point gleichzeitig zu betreiben.

Modbus

Um die Modbus TCP oder die Verbindung zu Fronius Solar.web nutzen zu können, muss jeder Tauro direkt mit dem Netzwerk über LAN verbunden werden.

Modbus RTU-Schnittstelle 0 / 1

Wird eine der beiden Modbus RTU Schnittstellen auf Slave gestellt, stehen folgende Eingabefelder zur Verfügung:

"Baudrate"

Die Baudrate beeinflusst die Geschwindigkeit der Übertragung zwischen den einzelnen im System angeschlossenen Komponenten. Bei der Auswahl der Baudrate ist darauf zu achten, dass diese auf Sende- und Empfangsseite gleich sind.

"Parität"

Das Paritätsbit kann zur Paritätskontrolle genutzt werden. Diese dient der Erkennung von Übertragungsfehlern. Ein Paritätsbit kann dabei eine bestimmte Anzahl von Bits absichern. Der Wert (O oder 1) des Paritätsbits muss beim Sender berechnet werden und wird beim Empfänger mithilfe der gleichen Berechnung überprüft. Die Berechnung des Paritätsbits kann für gerade oder ungerade Parität erfolgen..

"SunSpec Model Type"

Je nach Sunspec Model gibt es zwei verschiedene Einstellungen.

float: SunSpec Inverter Model 111, 112, 113 bzw. 211, 212, 213. **int + SF:** SunSpec Inverter Model 101, 102, 103 bzw. 201, 202, 203.

"Zähleradresse"

"Wechselrichteradresse"

Slave als Modbus TCP

Wird die Funktion "Slave als Modbus TCP" aktiviert, stehen folgende Eingabefelder zur Verfügung:

"Modbus-Port"

Nummer des TCP Ports, der für die Modbus-Kommunikation zu verwenden ist.

"SunSpec Model Type"

Je nach Sunspec Model gibt es zwei verschiedene Einstellungen.

float: SunSpec Inverter Model 111, 112, 113 bzw. 211, 212, 213. **int + SF:** SunSpec Inverter Model 101, 102, 103 bzw. 201, 202, 203.

"Zähleradresse"

Wechselrichter-Steuerung über Modbus

Wenn diese Option aktiviert ist, erfolgt die Wechselrichter-Steuerung über Modbus.

Zur Wechselrichter-Steuerung gehören folgende Funktionen:

- Ein / Aus
- Leistungsreduktion
- Vorgabe eines konstanten Power Factors (cos Phi)
- Vorgabe einer konstanten Blindleistung

Fernsteuerung

Fernsteuerung und Profile

Der Netzbetreiber / Energieversorger kann mittels Fernsteuerung die Ausgangsleistung des Wechselrichters beeinflussen. Voraussetzung dafür ist eine aktive Internetverbindung des Wechselrichters.

Parameter	Wertebereich	Beschreibung
Fernsteuerung	Aus	Die Fernsteuerung des Wechselrichters ist deaktiviert.
	Ein	Die Fernsteuerung des Wechselrichters ist aktiviert.
Fernsteuerung für Regulie- rungszwecke zulassen (Tech- nician)	Deaktiviert / Aktiviert	Die Funktion Fernsteuerung für Regulie- rungszwecke zulassen kann für den ord- nungsgemäßen Betrieb der Anlage ver- pflichtend sein. *)
Fernsteuerung für virtuelle Kraftwerke zu- lassen (Custo- mer)	Deaktiviert / Aktiviert	Wenn die Funktion Fernsteuerung für Regulierungszwecke zulassen aktiviert ist (Technician-Zugang erforderlich), ist die Funktion Fernsteuerung für virtuelle Kraftwerke zulassen automatisch aktiviert und kann nicht deaktiviert werden. *)

*) Cloud Control

Ein virtuelles Kraftwerk ist eine Zusammenschaltung mehrerer Erzeuger zu einem Verbund. Dieser Verbund kann über die Cloud-Steuerung per Internet gesteuert werden. Eine aktive Internetverbindung des Wechselrichters ist Voraussetzung dafür. Es werden Daten der Anlage übermittelt.

Fronius Solar API

Die Fronius Solar API ist eine Ethernet-basierte, offene JSON-Schnittstelle. Wenn sie aktiviert ist, können IOT-Geräte im lokalen Netzwerk ohne Authentifizierung auf Wechselrichter-Informationen zugreifen. Aus Sicherheitsgründen ist die Schnittstelle ab Werk deaktiviert und sollte nicht aktiviert werden, wenn sie nicht für eine Anwendung eines Drittanbieters benötigt wird (z. B. EV-Ladegerät, Smart Home-Lösungen, ...).

Für die Überwachung empfiehlt Fronius, stattdessen Fronius Solar.web, das einen sicheren Zugriff auf Wechselrichter-Status und Produktionsinformationen bietet, zu verwenden.

Bei einem Firmware-Update auf die Version 1.14.x wird die Einstellung der Fronius Solar API übernommen. Bei Anlagen mit einer Version unterhalb von 1.14.x ist die Solar API aktiviert, oberhalb dieser Version ist sie deaktiviert, kann aber im Menü ein- und ausgeschaltet werden.

Internet Services

In diesem Menü werden Informationen zu den Verbindungen und dem aktuellen Verbindungsstatus angezeigt. Bei Problemen mit der Verbindung ist eine kurze Fehlerbeschreibung ersichtlich.

Sicherheits- und Netzanforderungen

Länder-Setup

WARNUNG!

Gefahr durch nicht autorisierte Fehleranalysen und Instandsetzungsarbeiten. Schwerwiegende Personen- und Sachschäden können die Folge sein.

► Fehleranalysen und Instandsetzungsarbeiten an der PV-Anlage dürfen ausschließlich von Installateuren/Service-Technikern von autorisierten Fachbetrieben gemäß den nationalen Normen und Richtlinien durchgeführt werden.

HINWEIS!

Risiko durch unberechtigten Zugriff.

Falsch eingestellte Parameter können das öffentlichen Netz und/oder den Netz-Einspeisebetrieb des Wechselrichters negativ beeinflussen sowie zum Verlust der Normkonformität führen.

- ▶ Die Parameter dürfen ausschließlich von Installateuren/Service-Technikern von autorisierten Fachbetrieben angepasst werden.
- Den Zugangs-Code nicht an Dritte und/oder nicht autorisierte Person weitergeben.

HINWEIS!

Risiko durch falsch eingestellte Parameter.

Falsch eingestellte Parameter können das öffentlichen Netz negativ beeinflussen und/oder Funktionsstörungen und Ausfälle am Wechselrichter verursachen sowie zum Verlust der Normkonformität führen.

- ▶ Die Parameter dürfen ausschließlich von Installateuren/Service-Technikern von autorisierten Fachbetrieben angepasst werden.
- ▶ Die Parameter dürfen nur angepasst werden, wenn der Netzbetreiber dies erlaubt oder fordert.
- ▶ Die Parameter nur unter Berücksichtigung der national gültigen Normen und/oder Richtlinien sowie der Vorgaben des Netzbetreibers anpassen.

Der Menübereich "Länder-Setup" ist ausschließlich für Installateure/Service-Techniker von autorisierten Fachbetrieben bestimmt. Der Zugangs-Code muss beim nationalen/internationalen Ansprechpartner von Fronius mit einem Antragsformular beantragt werden.

Das gewählte Länder-Setup für das jeweilige Land beinhaltet voreingestellte Parameter entsprechend der national gültigen Normen und Anforderungen. Abhängig von örtlichen Netzverhältnissen und den Vorgaben des Netzbetreibers können Anpassungen am ausgewählten Länder-Setup erforderlich sein.

Einspeisebegrenzung

EVU oder Netzbetreiber können Einspeisebegrenzungen für einen Wechselrichter vorschreiben (z. B. max. 70 % der kWp oder max. 5 kW).

Die Einspeisebegrenzung berücksichtigt dabei den Eigenverbrauch, bevor die Leistung eines Wechselrichters reduziert wird:

Für die Einspeisebegrenzung gibt es zwei Möglichkeiten:

- a) Einfache Leistungsreduzierung eines Wechselrichters durch Fronius Smart Meter
- b) Leistungsreduzierung durch externen Plant Controller

Folgende Formeln geben eine Hilfestellung, welche Lösung Anwendung finden kann:

PWRn ... Leistung von Wechselrichter n

0% P_{WR1} + 100% P_{WR2} + 100% P_{WR3}... ≤ Einspeiselimit → Lösung a)

0% P_{WR1} + 100% P_{WR2} + 100% P_{WR3}... > Einspeiselimit → Lösung b)

Lösung a) - Leistungsreduzierung eines einzelnen Wechselrichters

Die Vorgaben können erfüllt werden, wenn durch die Leistungsreduzierung eines einzelnen Wechselrichters auf ≥ 0%, das vorgeschriebene Einspeiselimit erreicht wird.

Beispiel:

In einem System befinden sich 3 Wechselrichter: 1x Fronius Tauro 100 kW, 2x Fronius Tauro 50 kW. Das vorgegebene Einspeiselimit am Übergabepunkt darf 100 kW nicht überschreiten.

Lösung:

Der Fronius Tauro kann auf 0% Ausgangsleistung geregelt werden, um das Einspeiselimit zu erfüllen. Die Leistungen der beiden anderen Wechselrichter werden nicht reduziert und können jederzeit uneingeschränkt einspeisen.

Ist die Leistungsreduzierung eines Wechselrichters auf 0% nicht ausreichend, so muss Lösung b) angewandt werden.

Lösung b) - Integration eines Plant Controllers

Diese Lösung kommt zum Einsatz, falls die Vorgaben des Netzbetreibers durch die Begrenzung eines einzelnen Wechselrichters nicht erfüllt werden können oder ein dauerhafter Zugriff (z.B.: Fernabschaltung) gefordert wird. In diesem Fall wird die Integration eines PLANT-CONTROLLER empfohlen.

Eine detaillierte technische Übersicht zu dieser Lösung ist auf www.fronius.com mit dem Stichwort "Einspeisemanagement" zu finden.

Um neben der Monitoring-Funktion des PLANT-CONTROLLER-SYSTEMS auch von den Vorteilen von Fronius Solar.web zu profitieren, kann zusätzlich ein Fronius Smart Meter installiert werden. Die Integration eines Fronius Smart Meter stellt sicher, dass die Verbrauchs- und Einspeisedaten des PV-Systems in Fronius Solar.web visualisiert werden und zur Analyse bereit stehen.

I/O-Leistungsmanagement

Allgemeines

In diesem Menüpunkt werden für ein Energieversorgungs-Unternehmen (EVU) relevante Einstellungen vorgenommen. Eingestellt werden können eine Wirkleistungs-Begrenzung in % und/oder eine Leistungsfaktor-Begrenzung.

WICHTIG!

Für Einstellungen im diesem Menüpunkt ist die Eingabe des Service-Passworts erforderlich. Einstellungen in diesem Menübereich darf nur von geschultem Fachpersonal durchgeführt werden!

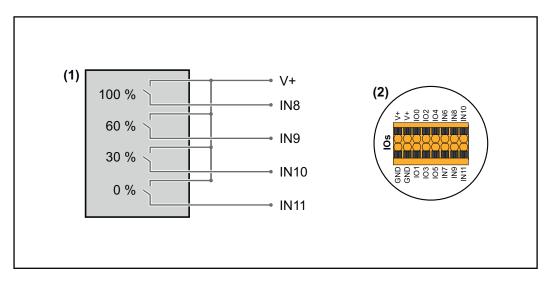
```
"Eingangsmuster" (Belegung der einzelnen I/Os)
1 x klicken = weiß (Kontakt offen)
2 x klicken = blau (Kontakt geschlossen)
3 x klicken = grau (Nicht verwendet)

"Leistungsfaktor (cos φ)"
"ind" = induktiv
"cap" = kapazitiv
```

"EVU Rückmeldung"

bei aktivierter Regel muss der Ausgang "EVU Rückmeldung" (Pin 1 empfohlen) konfiguriert werden (z. B. zum Betrieb einer Signaleinrichtung).

Für den "Import" bzw. "Export" wird das Datenformat *.fpc unterstützt.


Steuerungsprioritäten

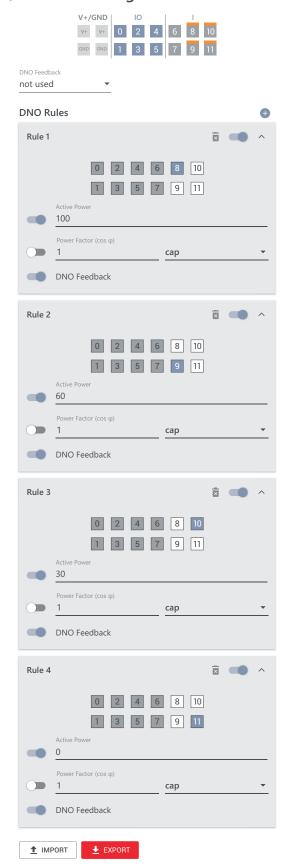
Zum Einstellen der Steuerungsprioritäten für den Rundsteuer-Signalempfänger, der Einspeisebegrenzung und die Steuerung über Modbus.

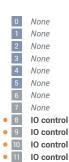
1 = höchste Priorität, 3 = niedrigste Priorität

Anschluss-Schema - 4 Relais

Die Rundsteuer-Signalempfänger und die I/Os Anschlussklemme des Wechselrichters können gemäß Anschluss-Schema miteinander verbunden werden. Für Entfernungen größer 10 m zwischen Wechselrichter und Rundsteuer-Signalempfänger wird mindestens ein CAT 5 Kabel empfohlen und die Schirmung muss einseitig an der Push-in Anschlussklemme des Datenkommunikations-Bereichs (SHIELD) angeschlossen werden.

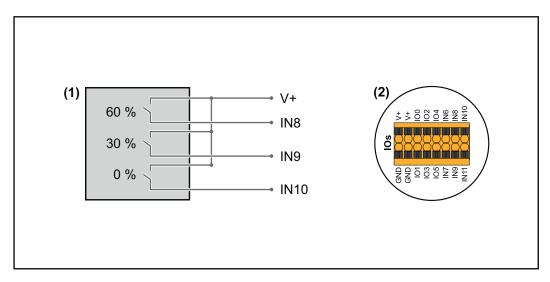
- (1) Rundsteuer-Signalempfänger mit 4 Relais, zur Wirkleistungs-Begrenzung.
- (2) I/Os des Datenkommunikations-Bereichs.


Vorkonfigurierte Datei für den 4 Relais-Betrieb verwenden:


- Die Datei (.fpc) unter **4 Relais-Betrieb** auf das Endgerät herunterladen.
- Die Datei (.fpc) im Menübereich "I/O Leistungsmanagement" über die Schaltfläche "Import" hochladen.
- 3 Die Schaltflächen "Speichern" klicken.

Die Einstellungen für den 4 Relais-Betrieb sind gespeichert.

Einstellungen I/O-Leistungsmanagement - 4 Relais


I/O Power Management

Anschluss-Schema - 3 Relais

Die Rundsteuer-Signalempfänger und die I/Os Anschlussklemme des Wechselrichters können gemäß Anschluss-Schema miteinander verbunden werden. Für Entfernungen größer 10 m zwischen Wechselrichter und Rundsteuer-Signalempfänger wird mindestens ein CAT 5 Kabel empfohlen und die Schirmung muss einseitig an der Push-in Anschlussklemme des Datenkommunikations-Bereichs (SHIELD) angeschlossen werden.

- (1) Rundsteuer-Signalempfänger mit 3 Relais, zur Wirkleistungs-Begrenzung.
- (2) I/Os des Datenkommunikations-Bereichs.

Vorkonfigurierte Datei für den 3 Relais-Betrieb verwenden:

- Die Datei (.fpc) unter **3 Relais-Betrieb** auf das Endgerät herunterladen.
- Die Datei (.fpc) im Menübereich "I/O Leistungsmanagement" über die Schaltfläche "Import" hochladen.
- 3 Die Schaltflächen "Speichern" klicken.

Die Einstellungen für den 3 Relais-Betrieb sind gespeichert.

Einstellungen I/O-Leistungsmanagement - 3 Relais

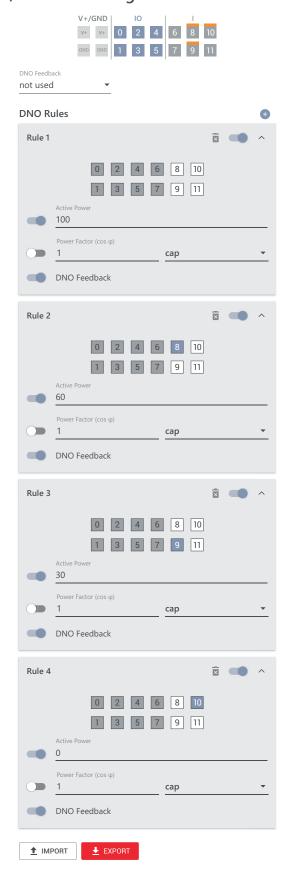
I/O Power Management

0 None

1 None

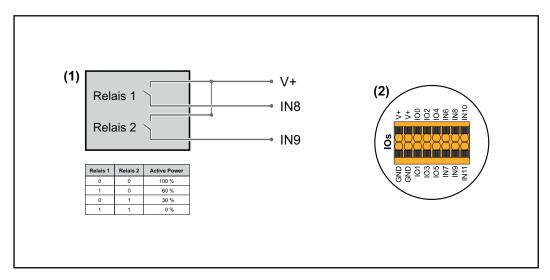
2 None

3 None 4 None


5 None

None 7 None

 IO control • 9


• 10 IO control 11 None

IO control

Anschluss-Schema - 2 Relais

Die Rundsteuer-Signalempfänger und die I/Os Anschlussklemme des Wechselrichters können gemäß Anschluss-Schema miteinander verbunden werden. Für Entfernungen größer 10 m zwischen Wechselrichter und Rundsteuer-Signalempfänger wird mindestens ein CAT 5 Kabel empfohlen und die Schirmung muss einseitig an der Push-in Anschlussklemme des Datenkommunikations-Bereichs (SHIELD) angeschlossen werden.

- (1) Rundsteuer-Signalempfänger mit 2 Relais, zur Wirkleistungs-Begrenzung.
- (2) I/Os des Datenkommunikations-Bereichs.

Vorkonfigurierte Datei für den 2 Relais-Betrieb verwenden:

- Die Datei (.fpc) unter **2 Relais-Betrieb** auf das Endgerät herunterladen.
- Die Datei (.fpc) im Menübereich "I/O Leistungsmanagement" über die Schaltfläche "Import" hochladen.
- 3 Die Schaltflächen "Speichern" klicken.

Die Einstellungen für den 2 Relais-Betrieb sind gespeichert.

Einstellungen I/O-Leistungsmanagement - 2 Relais

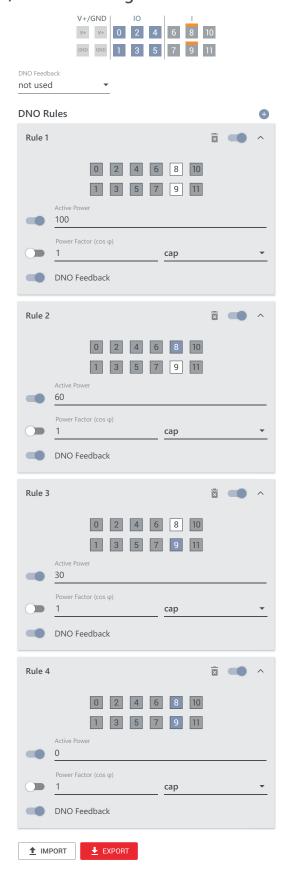
I/O Power Management

0 None

1 None

2 None

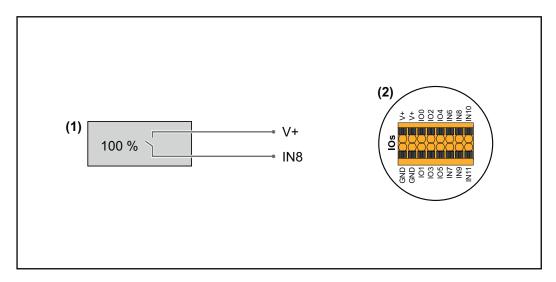
3 None 4 None


5 None

None 7 None

 IO control • 9

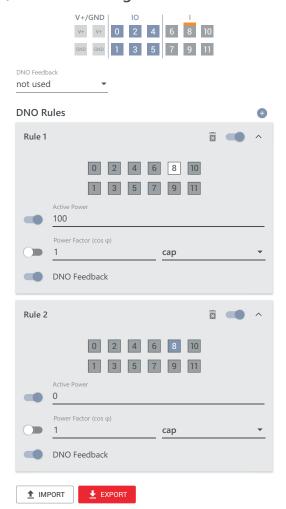
10 None 11 None


IO control

Anschluss-Schema - 1 Relais

Die Rundsteuer-Signalempfänger und die I/Os Anschlussklemme des Wechselrichters können gemäß Anschluss-Schema miteinander verbunden werden. Für Entfernungen größer 10 m zwischen Wechselrichter und Rundsteuer-Signalempfänger wird mindestens ein CAT 5 Kabel empfohlen und die Schirmung muss einseitig an der Push-in Anschlussklemme des Datenkommunikations-Bereichs (SHIELD) angeschlossen werden.

- (1) Rundsteuer-Signalempfänger mit 1 Relais, zur Wirkleistungs-Begrenzung.
- (2) I/Os des Datenkommunikations-Bereichs.


Vorkonfigurierte Datei für den 1 Relais-Betrieb verwenden:

- Die Datei (.fpc) unter **1 Relais-Betrieb** auf das Endgerät herunterladen.
- Die Datei (.fpc) im Menübereich "I/O Leistungsmanagement" über die Schaltfläche "Import" hochladen.
- 3 Die Schaltflächen "Speichern" klicken.

Die Einstellungen für den 1 Relais-Betrieb sind gespeichert.

Einstellungen I/O-Leistungsmanagement - 1 Relais

I/O Power Management

0 None

2 None

3 None 4 None

5 None

6 None 7 None

None

 IO control 9 None

10 None 11 None

Anhang

Statusmeldungen und Behebung

Statusmeldungen

1006 - ArcDetected (Betriebs-LED: blinkt gelb)

Ursache: Ein Lichtbogen an einer bestimmten Stelle der PV-Anlage wurde er-

kannt.

Behebung: Keine Aktion erforderlich. Der Einspeise-Betrieb wird erneut nach 5

Minuten automatisch gestartet.

1030 - WSD Open (Betriebs-LED: leuchtet rot)

Ursache: Ein in der WSD-Kette angeschlossenes Gerät hat die Signalleitung

unterbrochen (z. B. eine Überspannungs-Schutzeinrichtung) oder es wurde die ab Werk standardmäßig installierte Überbrückung entfernt

und keine Auslöseeinrichtung installiert.

Behebung: Bei ausgelöster Überspannungs-Schutzeinrichtung SPD muss der

Wechselrichter von einem autorisierten Fachbetrieb instand gesetzt

werden.

ODER: Die ab Werk standardmäßig installierte Überbrückung oder eine

Auslöseeinrichtung installieren.

ODER: Den WSD (Wired Shut Down) Switch auf Position 1 (WSD-

Primärgerät) stellen.

\triangle

WARNUNG!

Gefahr durch fehlerhaft durchgeführte Arbeiten.

Schwerwiegende Personen- und Sachschäden können die Folge sein.

- ▶ Einbau und Anschluss einer Überspannungs-Schutzeinrichtung SPD darf nur von Fronius-geschultem Service-Personal und nur im Rahmen der technischen Bestimmungen erfolgen.
- ► Sicherheitsvorschriften beachten.

1173 - ArcContinuousFault (Betriebs-LED: leuchtet rot)

Ursache: Ein Lichtbogen an der PV-Anlage wurde erkannt und die max. Anzahl

automatischen Zuschaltungen innerhalb von 24 Stunden wurde er-

reicht.

Behebung: Den Sensor am Wechselrichter 3 Sekunden (max. 6 Sekunden) ge-

drückt halten.

ODER: Auf der Webseite des Wechselrichters im Menübereich "System" →

"Event Log" den Status "1173 - ArcContinuousFault" bestätigen.

ODER: Auf der Webseite des Wechselrichters im Benutzermenü "Benach-

richtigungen" den Status "1173 - ArcContinuousFault" bestätigen.

ı.

VORSICHT!

Gefahr durch beschädigte Komponenten der PV-Anlage

Schwerwiegende Personen-/Sachschäden können die Folge sein.

- ▶ Bevor der Status "1173 ArcContinuousFault" bestätigt wird, muss die gesamte betroffene PV-Anlage auf etwaige Schäden überprüft werden.
- ▶ Beschädigte Komponenten vom qualifizierten Fachpersonal instand setzen lassen.

Technische Daten

Tauro 50-3-D / 50-3-P

Eingangsdaten	
Maximale Eingangsspannung (bei 1000 W/m² / -10 °C im Leerlauf)	1000 V _{DC}
Eingangsspannung beim Einschalten	200 V _{DC}
MPP-Spannungsbereich	400 - 870 V _{DC}
Anzahl MPP-Controller	3
Maximaler Eingangsstrom (I _{DC max}) Gesamt PV1 / PV2 / PV3 pro Strang (nur für D-Variante)	134 A 36 A / 36 A / 72 A 14,5 A / 22 A (30A fuses)
Max. Kurzschluss-Strom ⁸⁾ Gesamt PV1 / PV2 / PV3 pro Strang (nur für D-Variante)	240 A 72 A / 72 A / 125 A 20 A / 30 A (30A fuses)
Maximale PV-Feld Leistung (P _{PV max}) Gesamt PV1 / PV2 / PV3	75 kWp 25 kWp / 25 kWp / 50 kWp
DC-Überspannungskategorie	2
Max. Wechselrichter-Rückspeisestrom zum PV-Feld ³⁾ D-Variante PV1 / PV2 / PV3 P-Variante PV1 / PV2 / PV3	72 / 72 / 125 A ⁴⁾ 0 / 0 / 0 A ⁴⁾
Max. Kapazität des PV-Generators gegen Erde	10000 nF
Grenzwert der Isolationswiderstandsprüfung zwischen PV-Generator und Erde (bei Auslieferung)	34 kΩ
Einstellbarer Bereich der Isolationswider- standsprüfung zwischen PV-Generator und Erde 6)	10 - 10000 kΩ
Grenzwert und Auslösezeit der plötzlichen Fehlerstromüberwachung (bei Auslieferung)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Grenzwert und Auslösezeit der kontinuierlichen Fehlerstromüberwachung (bei Auslieferung)	450 / 300 mA / ms
Einstellbarer Bereich der kontinuierlichen Fehlerstromüberwachung ⁶⁾	30 - 1000 mA
Zyklische Wiederholung der Isolationswiderstandsprüfung (bei Auslieferung)	24 h
Einstellbarer Bereich für die zyklische Wiederholung der Isolationswiderstandsprüfung	-

Ausgangsdaten	
Netzspannungs-Bereich	180 - 270 V _{AC}
Nenn-Netzspannung	220 V _{AC} 230 V _{AC} ¹⁾
Nennleistung	50 kW

Ausgangsdaten	
Nenn-Scheinleistung	50 kVA
Nennfrequenz	50 / 60 Hz ¹⁾
Maximaler Ausgangsstrom / Phase	76 A
Anfangs-Kurschlusswechselstrom / Phase I _K "	76 A
Leistungsfaktor cos phi	0 - 1 ind./cap. ²⁾
Netzanschluss	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maximale Ausgangsleistung	50 kW
Nominale Ausgangsleistung	50 kW
Nominaler Ausgangsstrom / Phase	75,8 A / 72,5 A
Klirrfaktor	< 3 %
AC-Überspannungskategorie	3
Einschaltstrom ⁵⁾	228 A peak / 26,6 A rms over 3,2 ms ⁴⁾
Max. Ausgangs-Fehlerstrom pro Zeitdauer	44,7 A / 16,24 ms

Allgemeine Daten	
Nachtbetrieb Verlustleistung = Standby-Verbrauch	15 W
Europäischer Wirkungsgrad (400 / 600 / 800 / 870 V _{DC})	97,8 / 98,3 / 97,9 / 97,7 %
Maximaler Wirkungsgrad	98,5 %
Schutzklasse	1
EMV Emissionsklasse	В
Verschmutzungsgrad	3
Zulässige Umgebungstemperatur mit eingebauter Option "AC-Trenner"	- 40 °C - +65 °C -30 °C - +65 °C
Zulässige Lagertemperatur	- 40 °C - +70 °C
Relative Luftfeuchtigkeit	0 - 100%
Schalldruck-Pegel (600 V _{DC})	68,4 dB(A) (ref. 20 μPA)
Schutzart	IP65
Abmessungen (Höhe x Breite x Tiefe)	755 x 1109 x 346 mm
Gewicht	98 kg
Wechselrichter Topologie	nicht-isoliert trafolos

Schutzeinrichtungen	
DC-Trennschalter	integriert
Kühlprinzip	geregelte Zwangs- belüftung
RCMU ⁹⁾	integriert
DC-Isolationsmessung ⁹⁾	integriert ²⁾

Schutzeinrichtungen	
Überlastverhalten	Arbeitspunkt-Verschie- bung Leistungsbegrenzung
Aktive Inselerkennung	Frequenzverschiebungs- Methode

Tauro Eco 50-3-D / 50-3-P

Eingangsdaten	
Maximale Eingangsspannung (bei 1000 W/m² / -10 °C im Leerlauf)	1000 V _{DC}
Eingangsspannung beim Einschalten	650 V _{DC}
MPP-Spannungsbereich	580 - 930 V _{DC}
Anzahl MPP-Controller	1
Maximaler Eingangsstrom (I _{DC max}) Gesamt PV1 / PV2 pro Strang (nur für D-Variante)	87,5 A 75 A / 75 A 14,5 A / 22 A (30A fuses)
Max. Kurzschluss-Strom 8) Gesamt PV1 / PV2 pro Strang (nur für D-Variante)	178 A 125 A / 125 A 20 A / 30 A (30A fuses)
Maximale PV-Feld Leistung (P _{PV max}) Gesamt PV1 / PV2	75 kWp 60 kWp / 60 kWp
DC-Überspannungskategorie	2
Max. Wechselrichter-Rückspeisestrom zum PV-Feld ³⁾	125 A ⁴⁾
Max. Kapazität des PV-Generators gegen Erde	10000 nF
Grenzwert der Isolationswiderstandsprüfung zwischen PV-Generator und Erde (bei Auslieferung) 7)	34 kΩ
Einstellbarer Bereich der Isolationswider- standsprüfung zwischen PV-Generator und Erde 6)	10 - 10000 kΩ
Grenzwert und Auslösezeit der plötzlichen Fehlerstromüberwachung (bei Auslieferung)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Grenzwert und Auslösezeit der kontinuierlichen Fehlerstromüberwachung (bei Auslieferung)	450 / 300 mA / ms
Einstellbarer Bereich der kontinuierlichen Fehlerstromüberwachung ⁶⁾	30 - 1000 mA
Zyklische Wiederholung der Isolationswiderstandsprüfung (bei Auslieferung)	24 h
Einstellbarer Bereich für die zyklische Wiederholung der Isolationswiderstandsprüfung	-

Ausgangsdaten	
Netzspannungs-Bereich	180 - 270 V _{AC}
Nenn-Netzspannung	220 V _{AC} 230 V _{AC} ¹⁾
Nennleistung	50 kW
Nenn-Scheinleistung	50 kVA
Nennfrequenz	50 / 60 Hz ¹⁾
Maximaler Ausgangsstrom / Phase	76 A
Anfangs-Kurschlusswechselstrom / Phase I_K "	76 A
Leistungsfaktor cos phi	0 - 1 ind./cap. ²⁾
Netzanschluss	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maximale Ausgangsleistung	50 kW
Nominale Ausgangsleistung	50 kW
Nominaler Ausgangsstrom / Phase	75,8 A / 72,5 A
Klirrfaktor	< 3 %
AC-Überspannungskategorie	3
Einschaltstrom ⁵⁾	209 A peak / 30,5 A rms over 2,1 ms ⁴⁾
Max. Ausgangs-Fehlerstrom pro Zeitdauer	37,2 A / 19,4 ms

Allgemeine Daten	
Nachtbetrieb Verlustleistung = Standby-Verbrauch	15 W
Europäischer Wirkungsgrad (580 / 800 / 930 V _{DC})	98,2 / 97,7 / 97,3 %
Maximaler Wirkungsgrad	98,5 %
Schutzklasse	1
EMV Emissionsklasse	В
Verschmutzungsgrad	3
Zulässige Umgebungstemperatur mit eingebauter Option "AC-Trenner"	- 40 °C - +65 °C -30 °C - +65 °C
Zulässige Lagertemperatur	- 40 °C - +70 °C
Relative Luftfeuchtigkeit	0 - 100%
Schalldruck-Pegel (580 V _{DC})	68,5 dB(A) (ref. 20 μPA)
Schutzart	IP65
Abmessungen (Höhe x Breite x Tiefe)	755 x 1109 x 346 mm
Gewicht	80 kg
Wechselrichter Topologie	nicht-isoliert trafolos

Schutzeinrichtungen	
DC-Trennschalter	integriert

Schutzeinrichtungen	
Kühlprinzip	geregelte Zwangs- belüftung
RCMU ⁹⁾	integriert
DC-Isolationsmessung ⁹⁾	integriert ²⁾
Überlastverhalten	Arbeitspunkt-Verschie- bung Leistungsbegrenzung
Aktive Inselerkennung	Frequenzverschiebungs- Methode
AFCI (nur für D-Variante mit 15/20 A Sicherung)	Optional
AFPE (AFCI) Klassifizierung (gemäß IEC63027) ⁹⁾ (nur für D-Variante mit 15/20 A Sicherung)	= F-I-AFPE-1-7/7-2 Vollständige Abdeckung Integriert AFPE 1 überwachter String pro Eingangs-Port 7/7 Eingangs-Ports pro Kanal (AFD1: 7, AFD2: 7) 2 überwachte Kanäle

Tauro Eco 99-3-D / 99-3-P

Eingangsdaten	
Maximale Eingangsspannung (bei 1000 W/m² / -10 °C im Leerlauf)	1000 V _{DC}
Eingangsspannung beim Einschalten	650 V _{DC}
MPP-Spannungsbereich	580 - 930 V _{DC}
Anzahl MPP-Controller	1
Maximaler Eingangsstrom (I _{DC max}) Gesamt P-Variante PV1 / PV2 D-Variante PV1 / PV2 / PV3 pro Strang (nur für D-Variante)	175 A 100 A / 100 A 75 A / 75 A / 75 A 14,5 A / 22 A (30A fuses)
Max. Kurzschluss-Strom 8) P-Variante Gesamt D-Variante Gesamt PV1 / PV2 / (PV3 nur für D-Variante) pro Strang (nur für D-Variante)	250 A 355 A 125 A / 125 A / 125 A 20 A / 30 A (30A fuses)
Maximale PV-Feld Leistung (P _{PV max}) Gesamt P-Variante PV1 / PV2 D-Variante PV1 / PV2 / PV3	150 kWp 79 kWp / 79 kWp 57 kWp / 57 kWp / 57 kWp
DC-Überspannungskategorie	2
Max. Wechselrichter-Rückspeisestrom zum PV- Feld ³⁾ P-Variante Gesamt D-Variante Gesamt	125 A ⁴⁾ 250 A ⁴⁾
Max. Kapazität des PV-Generators gegen Erde	19998 nF

Eingangsdaten	
Grenzwert der Isolationswiderstandsprüfung zwischen PV-Generator und Erde (bei Auslieferung)	34 kΩ
Einstellbarer Bereich der Isolationswider- standsprüfung zwischen PV-Generator und Erde 6)	10 - 10000 kΩ
Grenzwert und Auslösezeit der plötzlichen Fehlerstromüberwachung (bei Auslieferung)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Grenzwert und Auslösezeit der kontinuierlichen Fehlerstromüberwachung (bei Auslieferung)	900 / 300 mA / ms
Einstellbarer Bereich der kontinuierlichen Fehlerstromüberwachung ⁶⁾	30 - 1000 mA
Zyklische Wiederholung der Isolationswiderstandsprüfung (bei Auslieferung)	24 h
Einstellbarer Bereich für die zyklische Wiederholung der Isolationswiderstandsprüfung	-

Ausgangsdaten	
Netzspannungs-Bereich	180 - 270 V _{AC}
Nenn-Netzspannung	220 V _{AC} 230 V _{AC} ¹⁾
Nennleistung	99,99 kW
Nenn-Scheinleistung	99,99 kVA
Nennfrequenz	50 / 60 Hz ¹⁾
Maximaler Ausgangsstrom / Phase	152 A
Anfangs-Kurschlusswechselstrom / Phase I _K "	152 A
Leistungsfaktor cos phi	0 - 1 ind./cap. ²⁾
Netzanschluss	3~ NPE 380 / 220 V _{AC} 3~ NPE 400 / 230 V _{AC}
Maximale Ausgangsleistung	99,99 kW
Nominale Ausgangsleistung	99,99 kW
Nominaler Ausgangsstrom / Phase	151,5 A / 144,9 A
Klirrfaktor	< 3 %
AC-Überspannungskategorie	3
Einschaltstrom ⁵⁾	244 A peak / 27,2 A rms over 3,2 ms ⁴⁾
Max. Ausgangs-Fehlerstrom pro Zeitdauer	93,9 A / 22 ms

Allgemeine Daten	
Nachtbetrieb Verlustleistung = Standby-Verbrauch	15 W
Europäischer Wirkungsgrad (580 / 800 / 930 V _{DC})	98,2 / 97,7 / 97,3 %
Maximaler Wirkungsgrad	98,5 %

Allgemeine Daten	
Schutzklasse	1
EMV Emissionsklasse	В
Verschmutzungsgrad	3
Zulässige Umgebungstemperatur mit eingebauter Option "AC-Trenner"	- 40 °C - +65 °C -30 °C - +65 °C
Zulässige Lagertemperatur	- 40 °C - +70 °C
Relative Luftfeuchtigkeit	0 - 100%
Schalldruck-Pegel (580 V _{DC} / 930 V _{DC})	74,4 / 79,3 dB(A) (ref. 20 μPA)
Schutzart	IP65
Abmessungen (Höhe x Breite x Tiefe)	755 x 1109 x 346 mm
Gewicht	109 kg
Wechselrichter Topologie	nicht-isoliert trafolos

Schutzeinrichtungen	
DC-Trennschalter	integriert
Kühlprinzip	geregelte Zwangs- belüftung
RCMU ⁹⁾	integriert
DC-Isolationsmessung ⁹⁾	integriert ²⁾
Überlastverhalten	Arbeitspunkt-Verschie- bung Leistungsbegrenzung
Aktive Inselerkennung	Frequenzverschiebungs- Methode
AFCI (nur für D-Variante mit 15/20 A Sicherung)	Optional
AFPE (AFCI) Klassifizierung (gemäß IEC63027) ⁹⁾ (nur für D-Variante mit 15/20 A Sicherung)	= F-I-AFPE-1-7/7/8-3 Vollständige Abdeckung Integriert AFPE 1 überwachter String pro Eingangs-Port 7/7/8 Eingangs-Ports pro Kanal (AFD1: 7, AFD2: 7, AFD3: 8) 3 überwachte Kanäle

Tauro Eco 100-3-D / 100-3-P

Eingangsdaten	
Maximale Eingangsspannung (bei 1000 W/m² / -10 °C im Leerlauf)	1000 V _{DC}
Eingangsspannung beim Einschalten	650 V _{DC}
MPP-Spannungsbereich	580 - 930 V _{DC}
Anzahl MPP-Controller	1

Eingangsdaten	
Maximaler Eingangsstrom (I _{DC max}) Gesamt P-Variante PV1 / PV2 D-Variante PV1 / PV2 / PV3 pro Strang (nur für D-Variante)	175 A 100 A / 100 A 75 A / 75 A / 75 A 14,5 A / 22 A (30A fuses)
Max. Kurzschluss-Strom 8) P-Variante Gesamt D-Variante Gesamt PV1 / PV2 / (PV3 nur für D-Variante) pro Strang (nur für D-Variante)	250 A 355 A 125 A / 125 A / 125 A 20 A / 30 A (30A fuses)
Maximale PV-Feld Leistung (P _{PV max}) Gesamt P-Variante PV1 / PV2 D-Variante PV1 / PV2 / PV3	150 kWp 79 kWp / 79 kWp 57 kWp / 57 kWp / 57 kWp
DC-Überspannungskategorie	2
Max. Wechselrichter-Rückspeisestrom zum PV- Feld ³⁾ P-Variante Gesamt D-Variante Gesamt	125 A ⁴⁾ 250 A ⁴⁾
Max. Kapazität des PV-Generators gegen Erde	20000 nF
Grenzwert der Isolationswiderstandsprüfung zwischen PV-Generator und Erde (bei Auslieferung) 7)	34 kΩ
Einstellbarer Bereich der Isolationswider- standsprüfung zwischen PV-Generator und Erde 6)	10 - 10000 kΩ
Grenzwert und Auslösezeit der plötzlichen Fehlerstromüberwachung (bei Auslieferung)	30 / 300 mA / ms 60 / 150 mA / ms 90 / 40 mA / ms
Grenzwert und Auslösezeit der kontinuierlichen Fehlerstromüberwachung (bei Auslieferung)	900 / 300 mA / ms
Einstellbarer Bereich der kontinuierlichen Fehlerstromüberwachung ⁶⁾	30 - 1000 mA
Zyklische Wiederholung der Isolationswiderstandsprüfung (bei Auslieferung)	24 h
Einstellbarer Bereich für die zyklische Wiederholung der Isolationswiderstandsprüfung	-

Ausgangsdaten	
Netzspannungs-Bereich	180 - 270 V _{AC}
Nenn-Netzspannung	220 V _{AC} 230 V _{AC} ¹⁾
Nennleistung	100 kW
Nenn-Scheinleistung	100 kVA
Nennfrequenz	50 / 60 Hz ¹⁾
Maximaler Ausgangsstrom / Phase	152 A
Anfangs-Kurschlusswechselstrom / Phase I _K "	152 A
Leistungsfaktor cos phi	0 - 1 ind./cap. ²⁾

Ausgangsdaten	
Netzanschluss	3~ NPE 380 / 220 V _{AC}
	3~ NPE 400 / 230 V _{AC}
Maximale Ausgangsleistung	100 kW
Nominale Ausgangsleistung	100 kW
Nominaler Ausgangsstrom / Phase	151,5 A / 144,9 A
Klirrfaktor	< 3 %
AC-Überspannungskategorie	3
Einschaltstrom ⁵⁾	244 A peak /
	27,2 A rms over 3,2 ms ⁴⁾
Max. Ausgangs-Fehlerstrom pro Zeitdauer	93,9 A / 22 ms

Allgemeine Daten	
Nachtbetrieb Verlustleistung = Standby-Verbrauch	15 W
Europäischer Wirkungsgrad (580 / 800 / 930 V _{DC})	98,2 / 97,7 / 97,3 %
Maximaler Wirkungsgrad	98,5 %
Schutzklasse	1
EMV Emissionsklasse	В
Verschmutzungsgrad	3
Zulässige Umgebungstemperatur mit eingebauter Option "AC-Trenner"	- 40 °C - +65 °C -30 °C - +65 °C
Zulässige Lagertemperatur	- 40 °C - +70 °C
Relative Luftfeuchtigkeit	0 - 100%
Schalldruck-Pegel (580 V _{DC} / 930 V _{DC})	74,4 / 79,3 dB(A) (ref. 20 μPA)
Schutzart	IP65
Abmessungen (Höhe x Breite x Tiefe)	755 x 1109 x 346 mm
Gewicht	109 kg
Wechselrichter Topologie	nicht-isoliert trafolos

Schutzeinrichtungen	
DC-Trennschalter	integriert
Kühlprinzip	geregelte Zwangs- belüftung
RCMU ⁹⁾	integriert
DC-Isolationsmessung ⁹⁾	integriert ²⁾
Überlastverhalten	Arbeitspunkt-Verschie- bung Leistungsbegrenzung
Aktive Inselerkennung	Frequenzverschiebungs- Methode
AFCI (nur für D-Variante mit 15/20 A Sicherung)	Optional

AFPE (AFCI) Klassifizierung (gemäß IEC63027) 9) (nur für D-Variante mit 15/20 A Sicherung) = F-I-AFPE-1-7/7/8-3 Vollständige Abdeckung Integriert AFPE 1 überwachter String pro Eingangs-Port 7/7/8 Eingangs-Ports pro Kanal (AFD1: 7, AFD2: 7, AFD3: 8) 3 überwachte Kanäle

WLAN

WLAN					
Frequenzbereich	2412 - 2462 MHz				
Benützte Kanäle / Leistung	Kanal: 1-11 b,g,n HT20 Kanal: 3-9 HT40 <18 dBm				
Modulation	802.11b: DSSS (1Mbps DBPSK, 2Mbps DQPSK, 5.5/11Mbps CCK) 802.11g: OFDM (6/9Mbps BPSK, 12/18Mbps QPSK, 24/36Mbps 16- QAM, 48/54Mbps 64-QAM) 802.11n: OFDM (6.5 BPSK, QPSK, 16-QAM, 64-QAM)				

Erklärung der Fußnoten

- 1) Angegebene Werte sind Standard-Werte; je nach Anforderung wird der Wechselrichter spezifisch auf das jeweilige Land abgestimmt.
- 2) Je nach Länder-Setup oder gerätespezifischen Einstellungen (ind. = induktiv; cap. = kapazitiv)
- 3) Maximaler Strom von einem defekten PV-Modul zu allen anderen PV-Modulen. Vom Wechselrichter selbst zur PV-Seite des Wechselrichters beträgt er O A.
- 4) sichergestellt durch den elektrischen Aufbau des Wechselrichters
- 5) Stromspitze beim Einschalten des Wechselrichters
- 6) Angegebene Werte sind Standard-Werte; je nach Anforderung und PV-Leistung sind diese Werte entsprechend anzupassen.
- 7) Angegebener Wert ist ein max. Wert; das Überschreiten des max. Wertes kann die Funktion negativ beeinflussen.
- 8) $I_{SC\ PV} = I_{CP\ PV} \ge I_{SC\ max} = I_{SC} (STC) \times 1,25 \text{ nach z. B.: IEC } 60364-7-712,$ NEC 2020, AS/NZS 5033:2021
- 9) Software-Klasse B (einkanalig mit periodischem Selbsttest) gemäß IE-C60730-1 Anhang H.

Integrierter DC-Trenner

Einstellungen	
Produktname	EATON PV-DIS-10-125/2-REFOHA

Einstellungen							
Bemessungs-Isolati- onsspannung	1000 V _{DC}						
Bemessungs- Stoßspannungsfes- tigkeit	6 kV						
Eignung zur Isolati- on	Ja, nur DC						
Bemessungs-Be- triebsstrom	Bemessungs-Betriebsstrom Ie ≤ 100 A: DC-PV2 Gebrauchskategorie (gem. IEC/EN 60947-3)						
	Bemessungs-Betriebsstrom Ie ≤ 125 A: DC-PV1 Gebrauchskategorie (gem. IEC/EN 60947-3)						
Gebrauchskategorie und / oder PV-Ge- brauchskategorie	nach IEC/EN 60947-3 Gebrauchskategorie DC-PV2 oder DC-PV1						
Bemessungs-Kurz- zeitstromfestigkeit (Icw)	Bemessungs-Kurzzeitstromfestigkeit (Icw): 12 x le						
Bemessungs-Kurz- schlusseinschalt- vermögen (Icm)	Bemessungs-Kurzschlusseinschaltvermögen (Icm): 1000 A						
Bemessungs-Aus- schaltvermögen	Bemes- sungs- Betriebs- span- nung (Ue) [V d.c.]	Bemes- sungs- Betriebs- strom (Ie) [A]	I(make) / I(break) (1,5x Ie) [A] DC-PV1	Bemes- sungs- Betriebs- strom (Ie) [A]	I(make) / I(break) (4x Ie) [A] DC-PV2		
	[v a.c.]	DC-PV1		DC-PV2			
	≤ 500	125	187,5	125	500		
	600	125	187,5	125	500		
	800	125	187,5	125	500		
	900	125	187,5	110	440		
	1000	125	187,5	100	400		

Berücksichtigte Normen und Richtlinien

CE-Kennzeichen

Alle erforderlichen und einschlägigen Normen sowie Richtlinien im Rahmen der einschlägigen EU-Richtlinie werden eingehalten, sodass die Geräte mit dem CE-Kennzeichen ausgestattet sind.

WLAN

Übereinstimmung mit 2014/53/EU Funkgeräterichtlinie (Radio Equipment Directive RED)

Die zuvor aufgelistete technischen Daten Tabelle enthält gemäß Artikel 10.8 (a) und 10.8 (b) der RED Informationen zu den verwendeten Frequenzbändern und der maximalen HF-Sendeleistung von Fronius Wireless-Produkten, die in der EU zum Verkauf angeboten werden.

Fronius Produkte müssen so installiert und betrieben werden, dass das Produkt 20 cm oder mehr vom Körper entfernt ist.

Netzausfall

Die serienmäßig in den Wechselrichter integrierten Mess- und Sicherheitsverfahren sorgen dafür, dass bei einem Netzausfall die Einspeisung sofort unterbrochen wird (z.B. bei Abschaltung durch den Energieversorger oder Leitungsschaden).

Service, Garantiebedingungen und Entsorgung

Fronius SOS

Unter sos.fronius.com können Sie jederzeit Garantie- und Geräteinformationen abrufen, eigenständig die Fehlersuche starten sowie Austauschkomponenten anfordern.

Für nähere Informationen zu Ersatzteilen wenden Sie sich an Ihren Installateur oder Ansprechpartner für die PV Anlage.

Fronius Werksgarantie

Detaillierte, länderspezifische Garantiebedingungen sind im Internet erhältlich: www.fronius.com/solar/garantie

Um die volle Garantielaufzeit für Ihren neu installierten Fronius Wechselrichter oder Speicher zu erhalten, registrieren Sie sich bitte unter: www.solarweb.com.

Entsorgung

Der Hersteller Fronius International GmbH nimmt das Altgerät zurück und sorgt für eine fachgerechte Wiederverwertung. Die nationalen Vorschriften zur Entsorgung von Elektronikaltgeräten beachten.

Fronius International GmbH

Froniusstraße 1 4643 Pettenbach Austria contact@fronius.com www.fronius.com

At <u>www.fronius.com/contact</u> you will find the contact details of all Fronius subsidiaries and Sales & Service Partners.